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Abstract

We provide a formal introduction into the classic theorems of general

topology and its axiomatic foundations in set theory. In this second

part we introduce the fundamental concepts of topological spaces, con-

vergence, and continuity, as well as their applications to real numbers.

Various methods to construct topological spaces are presented.
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This is the second part of a series of articles on the foundations of analysis,

cf. [Nagel]. For the Preface and Chapters 1 to 4 see Part I.
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4 Chapter 5. Topologies and filters

5.1 Set systems

In this Section we introduce three basic functions on set systems, that are used

in many places subsequently. Each of these functions is defined with respect to

a given set X as a function that maps every subsystem of P(X) on a—generally

larger—subsystem of P(X). A fourth function is introduced at the end of this

Section, which is used in the context of neighborhood system in Section 5.4.

The introduction of the following new symbol turns out to be useful.

Definition 5.1

Given a set X, we write A @ X if A ⊂ X and A is finite. �

Definition 5.2

Given a set X, we define the following functions:

ΨX : P2(X) −→ P2(X), ΨX(A) = {
⋂
B : B @ A, B 6= Ø} ;

ΘX : P2(X) −→ P2(X), ΘX(A) = {
⋃
B : B ⊂ A, B 6= Ø} ;

ΦX : P2(X) −→ P2(X), ΦX(A) = {B ⊂ X : ∃A ∈ A A ⊂ B}

When the set X we refer to is evident from the context, we also use the short

notations Ψ, Θ, and Φ, respectively. �

That is, for a system A of subsets of X, Ψ(A) is the system of all finite intersec-

tions of members of A, Θ(A) is the system of all unions of members of A, and

Φ(A) is the system of all subsets of X that contain some member of A.

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
notions



5.1 Set systems 5

Remark 5.3

Given a set X, the following equations hold:

(i) Ψ(Ø) = Ø , Θ(Ø) = Ø , Φ(Ø) = Ø

(ii) Ψ ◦Ψ = Ψ , Θ ◦Θ = Θ , Φ ◦ Φ = Φ

(iii) Ψ({Ø}) = {Ø} , Θ({Ø}) = {Ø} , Φ({Ø}) = P(X)

(iv) Ψ({X}) = {X} , Θ({X}) = {X} , Φ({X}) = {X}

(v) Ψ({Ø, X}) = {Ø, X} , Θ({Ø, X}) = {Ø, X} , Φ({Ø, X}) = P(X)

�

The identities in Remark 5.3 (ii) say that Ψ, Θ, and Φ are projective.

The composition of two of the functions is not commutative. However, we have

the following result.

Lemma 5.4

Given a set X, we have for every A ⊂ P(X):

Ψ Θ (A) ⊂ Θ Ψ (A) , Ψ Φ (A) ⊂ Φ Ψ (A)

The maps (Θ Ψ) and (Φ Ψ) are projective.

Proof. In order to prove the first claim, let A =
⋂n
i=1

⋃
{Aij : j ∈ Ji} where

n ∈ N, n > 0, and, for every i ∈ N, 1 ≤ i ≤ n, Ji is an index set and Aij ∈ A
(j ∈ Ji). We have

A =
⋃{⋂n

k=1
Akj(k) : j ∈×n

i=1
Ji

}
∈ Θ Ψ (A)

To show the second claim, let n ∈ N, n > 0, and for every i ∈ N, 1 ≤ i ≤ n, let

Ai ∈ A and Bi be a set with Ai ⊂ Bi. Further let B =
⋂n
i=1Bi. It follows that

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
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6 Chapter 5. Topologies and filters

B ⊃
⋂n
i=1Ai, and thus B ∈ Φ Ψ (A).

Now the last claim clearly follows. �

Lemma 5.5

Given a set X, (P2(X),⊂) is an ordered space in the sense of ”≤”. In particular,

⊂ is a reflexive pre-ordering. The maps Ψ, Θ, and Φ as well as their compositions

are ⊂-increasing. For every A,B ⊂ P(X) we have:

(i) A ⊂
Ψ
B ⇐⇒ Ψ(A) ⊂ Ψ(B) ⇐⇒ A ⊂ Ψ(B)

⇐⇒ ∀A ∈ A ∃G @ B G 6= Ø, A =
⋂
G

(ii) A ⊂
Θ
B ⇐⇒ Θ(A) ⊂ Θ(B) ⇐⇒ A ⊂ Θ(B)

⇐⇒ ∀A ∈ A ∃H ⊂ B H 6= Ø, A =
⋃
H

(iii) A ⊂
Φ
B ⇐⇒ Φ(A) ⊂ Φ(B) ⇐⇒ A ⊂ Φ(B)

⇐⇒ ∀A ∈ A ∃B ∈ B A ⊃ B

(iv) A ⊂
ΘΨ
B ⇐⇒ Θ Ψ (A) ⊂ Θ Ψ (B) ⇐⇒ A ⊂ Θ Ψ (B)

⇐⇒ ∀A ∈ A ∃H ⊂ Ψ(B) H 6= Ø, A =
⋃
H

(v) A ⊂
ΦΨ
B ⇐⇒ Φ Ψ (A) ⊂ Φ Ψ (B) ⇐⇒ A ⊂ Φ Ψ (B)

⇐⇒ ∀A ∈ A ∃G @ B G 6= Ø, A ⊃
⋂
G

Proof. In each case the first equivalence is true by definition of the respective

relation, cf. Definition 2.88.

To see the second equivalence notice that Ψ, Θ, and Φ are projective by Re-

mark 5.3. The compositions (Θ Ψ) and (Φ Ψ) are projective by Lemma 5.4. The

second equivalence follows by Lemma 2.91.

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
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5.1 Set systems 7

The third equivalence in each case is a consequence of the definition of the maps.

�

Definition 5.6

Given a set X, the function Φ′X is defined by

Φ′X : P
(
X× P(X)

)
−→ P

(
X× P(X)

)
,

Φ′X(R) =
{

(x,B) ∈ X× P(X) : ∃A ⊂ X (x,A) ∈ R, A ⊂ B
}

When X is evident from the context, we also use the short notation Φ′ for Φ′X .

�

Lemma 5.7

Given a set X, x ∈ X, A ⊂ X, and R ⊂ X× P(X), we have:

(i) (Φ′(R)) {x} = Φ(R {x})

(ii) (Φ′(R)) [A] = Φ(R [A])

(iii) (Φ′(R)) 〈A〉 ⊃ Φ(R〈A〉)

Proof. (i) and (ii) clearly hold. To prove (iii) notice that

(Φ′(R)) 〈A〉 =
⋂

x∈A
(Φ′(R)) {x} =

⋂
x∈A

Φ(R {x})

=
{
B ⊂ X : ∀x ∈ A ∃Bx ⊂ B (x,Bx) ∈ R

}
⊃
{
B ⊂ X : ∃C ⊂ B ∀x ∈ A (x,C) ∈ R

}
= Φ(R〈A〉)

�
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8 Chapter 5. Topologies and filters

Lemma 5.8

Given a set X, the pair (P(X× P(X)),⊂) is an ordered space in the sense

of ”≤”. In particular, ⊂ is a reflexive pre-ordering on P(X× P(X)). The map

Φ′ is ⊂-increasing and projective. For every R,S ⊂ X× P(X) we have:

R ⊂
Φ′ S ⇐⇒ Φ′(R) ⊂ Φ′(S) ⇐⇒ R ⊂ Φ′(S)

⇐⇒ ∀(x,A) ∈ R ∃(y,B) ∈ S x = y, A ⊃ B

⇐⇒ ∀x ∈ X (Φ′(R)) {x} ⊂ (Φ′(S)) {x}

⇐⇒ ∀x ∈ X Φ(R {x}) ⊂ Φ(S {x})

⇐⇒ ∀x ∈ X R {x} ⊂
Φ
S {x}

Proof. Exercise. �

5.2 Topologies, bases, subbases

We start with the definition of a topological space.

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
notions



5.2 Topologies, bases, subbases 9

Definition 5.9

Given a set X, a system T ⊂ P(X) is called topology on X if it has all of the

following properties:

(i) Ø, X ∈ T

(ii) ∀G ⊂ T G 6= Ø =⇒
⋃
G ∈ T

(iii) ∀A,B ∈ T A ∩B ∈ T

The pair ξ = (X, T ) is called topological space. The members of T are called

ξ-open or T -open. They are also called open if the topology is evident from

the context. A set B ⊂ X is called ξ-closed if X \B is ξ-open. If the set X is

evident from the context, we also say that B is T -closed. If the set X and the

topology T are both evident from the context, we also say that B is closed. �

Notice that property (ii) in Definition 5.9 is equivalent to Θ(T ) = T . By property

(iii) it follows that
⋂
H ∈ T for every H @ T with H 6= Ø by the Induction

principle. Therefore property (iii) is equivalent to Ψ(T ) = T . Hence the system

of topologies on X contains precisely the fixed points of Θ and Ψ that additionally

satisfy property (i).

We now define several simple topologies that serve as examples throughout the

text.

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
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10 Chapter 5. Topologies and filters

Lemma and Definition 5.10

Given a set X, each of the following systems of subsets is a topology on X:

(i) Tdis = P(X) is called discrete topology.

(ii) Tin = {Ø, X} is called indiscrete topology.

(iii) Tcf = {A ⊂ X : Ac is finite} ∪ {Ø} is called cofinite topology.

(iv) Tcc = {A ⊂ X : Ac is countable} ∪ {Ø} is called cocountable topology.

Proof. Exercise. �

Example 5.11

Let X be a set and An ⊂ X (n ∈ N) such that An ⊂ An+1 (n ∈ N) and⋃
n∈NAn = X. Then A = {An : n ∈ N} ∪ {Ø, X} is a topology on X. �

The analogues of properties (i) to (iii) in Definition 5.9 hold for the system of

closed sets as follows.

Lemma 5.12

Let ξ = (X, T ) be a topological space. The system C of all ξ-closed sets has the

following properties:

(i) Ø, X ∈ C

(ii) ∀G ⊂ C G 6= Ø =⇒
⋂
G ∈ C

(iii) ∀A,B ∈ C A ∪B ∈ C

Proof. Exercise. �

Clearly, property (iii) in Lemma 5.12 implies that
⋃
H ∈ C for every H @ C with

H 6= Ø by the Induction principle (or by the analogue for open sets).

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
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5.2 Topologies, bases, subbases 11

The following Lemma demonstrates that for a given system C of subsets of X

one may first confirm that C is the system of all closed subsets for some topology

on X and then construct the topology from C.

Lemma 5.13

Given a set X and a system C of subsets of X satisfying (i) to (iii) in Lemma 5.12,

the system T = {Bc : B ∈ C} is a topology on X, and C is the system of all T -

closed sets.

Proof. Exercise. �

We often encounter more than one topology on the same set. The notions in the

following Definition are useful in this case.

Definition 5.14

Let X be a set and T1 and T2 be two topologies on X. If T2 ⊂ T1, then T1 is

called finer than T2, and T2 is called coarser than T1. If T1 ⊂ T2 or T2 ⊂ T1,

then T1 and T2 are called comparable. If T2 ⊂ T1 and T1 6= T2, then T1 is called

strictly finer than T2, and T2 is called strictly coarser than T1. �

Remark 5.15

Let (X, T ) be a topological space. Then we have Tin ⊂ T ⊂ Tdis. �

Lemma 5.16

Given an uncountable set X, the topologies defined in Lemma 5.10 (i)–(iv) obey

Tin ⊂ Tcf ⊂ Tcc ⊂ Tdis, and no two of them are identical.

Proof. Exercise. �

The following notation allows us a more formal treatment in the sequel.

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
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12 Chapter 5. Topologies and filters

Definition 5.17

Given a set X, the system of all topologies on X is denoted by T (X). �

Lemma and Definition 5.18

Let X be a set, A ⊂ T (X), and T ∈ A . The pair (A ,⊂) is a space ordered in

the sense of ”≤”. T is called finest (coarsest) topology of A if it is a maximum

(minimum) of A . A has at most one finest and at most one coarsest topology.

Proof. Exercise. �

Remark 5.19

The discrete topology on X is the finest member of T (X), and thus it is an

upper bound of any subsystem A ⊂ T (X). The indiscrete topology on X is

the coarsest member of T (X), and thus it is a lower bound of any subsystem

A ⊂ T (X). �

It is proven below that for a given set X the supremum and the infimum of every

system of topologies A ⊂ T (X) exist and are unique. In regard to Remark 5.19

this is equivalent to the least upper bound property of the ordering ⊂ on T (X).

The supremum of A , which is the coarsest topology that is finer than every

T ∈ A , is determined in Corollary 7.4. The infimum of A , which is the finest

topology that is coarser than every T ∈ A , is determined in Corollary 7.48.

It is often convenient to think of a topology as a system of sets that is, in a sense,

”generated” by a subsystem of open sets. The first step in this direction is to

determine a subsystem of open sets such that every open set can be written as

a union of members of such a generating system. Such a generating system is

called a base for the topology. Below we consider a yet smaller subsystem, called

subbase.

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
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5.2 Topologies, bases, subbases 13

Definition 5.20

Given a topological space (X, T ), a system B ⊂ T is called base for T if

T = Θ(B), i.e. if the system of all unions of members of B is identical to T . We

also say that B generates T . �

For a given topology there generally exists more than one base generating it.

Example 5.21

Given a set X, the system B = {{x} : x ∈ X} of all singletons is a base for the

discrete topology Tdis on X. Every other base for Tdis contains B. �

Example 5.22

Given a set X, the only base for the indiscrete topology Tin on X is Tin itself.

�

Lemma 5.23

Given a topological space (X, T ), a system B ⊂ T is a base for T iff for every

U ∈ T and x ∈ U there exists B ∈ B such that x ∈ B ⊂ U .

Proof. Exercise. �

The following Lemma provides a characterization of a system of subsets of X to

be a base for some topology.

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
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14 Chapter 5. Topologies and filters

Lemma and Definition 5.24

Let X be a set and Ø 6= B ⊂ P(X). B is a base for some topology on X iff it

satisfies all of the following conditions:

(i) Ø ∈ B

(ii) X =
⋃
B

(iii) ∀A,B ∈ B ∃C ⊂ B C 6= Ø ∧ A ∩B =
⋃
C

In this case, B is also called a topological base on X. The topology generated

by B is unique.

Proof. Assume that (i) to (iii) hold, and let T = Θ(B). It follows by Defini-

tion 5.9 and Lemma 1.34 that T is a topology on X. Clearly B generates T .

The converse implication and the uniqueness of the topology generated by B are

obvious. �

Notice that we have excluded the case B = Ø in Lemma and Definition 5.24 only

because property (ii) has to be well-defined. If a system B satisfies property (i),

this obviously implies B 6= Ø.

We may compare two topological bases on the same set X with each other

similarly as we compare two topologies. We even refer in our definitions to

the corresponding notions for the comparison of two topologies.

Definition 5.25

Let A and B be two topological bases on a set X. B is called finer, coarser,

strictly finer, strictly coarser than B if the generated topologies Θ(A) and

Θ(B) have the respective property. A and B are called comparable if Θ(A) and

Θ(B) are comparable. �

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
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5.2 Topologies, bases, subbases 15

Notice that every topology on a set X is a base for itself. If T1 and T2 are two

topologies on a set X, T1 is finer than T2 in the sense of Definition 5.14 iff T1 is

finer than T2 in the sense of Definition 5.25, etc. That is Definitions 5.14 and 5.25

are consistent when referring to two topologies in both cases.

Definition 5.26

Given a set X, the system of all topological bases on X is denoted by TB(X).

�

Remark 5.27

Given a set X, we have T (X) ⊂ B(X) and B(X) = Θ−1 [T (X)]. For every

T ∈ T (X), the system of all bases for T is given by Θ−1 {T }. �

When we compare two topologies on X, we use the ordering ⊂ on T (X). The

direct comparison of topological bases requires another pre-ordering on P2(X)

whose properties are analysed in Lemma 5.5.

Remark 5.28

Given a set X, the pair
(
B(X),⊂

Θ

)
is a pre-ordered space with a reflexive

relation. Let A,B ∈ B(X). The following statements are true:

(i) A is finer than B ⇐⇒ B ⊂
Θ
A

(ii) A is strictly finer than B ⇐⇒
(
B ⊂

Θ
A
)
∧ ¬

(
A ⊂

Θ
B
)

(iii) A and B are comparable ⇐⇒
(
B ⊂

Θ
A
)
∨
(
A ⊂

Θ
B
)

�

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
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16 Chapter 5. Topologies and filters

Remark 5.29

Let X be a set and A,B ⊂ P(X). By Lemma 5.5 (ii) we have

Θ(A) = Θ(B) ⇐⇒
(
B ⊂

Θ
A
)
∧
(
A ⊂

Θ
B
)

If one side is true (and hence both sides are true) and A is a topological base,

then also B is a topological base.

Notice that Θ(A) = Θ(B) need not imply A = B. �

The following is a counterexample.

Example 5.30

Let X be an infinite set. We may define systems

Bn = {Bnk ⊂ X : k ∈ N, 1 ≤ k ≤ 2n} (n ∈ N)

with the following properties:

(i) Bnk ∩Bnl = Ø (n, k, l ∈ N ; 1 ≤ k, l ≤ 2n ; k 6= l)

(ii)
⋃
Bn = X (n ∈ N)

(iii) Bnk = B(n+1)(2k−1) ∪B(n+1)(2k) (n, k ∈ N ; 1 ≤ k ≤ 2n)

Then each of the systems

C =
⋃
{Bn : n is odd} ∪ {Ø} , D =

⋃
{Bn : n is even} ∪ {Ø}

is a topological base on X, and Θ(C) = Θ(D). However, we have C 6= D. �

Definition 5.31

We say that a topological space (X, T ) or the topology T is second countable

if there exists a countable base for T . �

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
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5.2 Topologies, bases, subbases 17

We define below what we mean by ”first countable” topological space or topol-

ogy. This definition is based on the notion of neighborhood to be introduced in

Section 5.4.

Example 5.32

Given an uncountable set X, the discrete topology on X is not second countable.

�

In the same way as for the system of all open sets, there is a possibility to

”generate” the system of all closed sets from an appropriate subsystem that we

call ”base for the closed sets”. It is a system such that every closed set is an

intersection of its members.

Definition 5.33

Let ξ = (X, T ) be a topological space and C the system of all ξ-closed sets.

A system D ⊂ C is called base for C or base for the ξ-closed sets if C =

{
⋂
G : G ⊂ D, G 6= Ø}. When the set X is evident from the context, C is also

called base for the T -closed sets. When the set X as well as the topology T
are evident from the context, C is also called base for the closed sets. �

The base for a topology and the base for the closed sets are related by comple-

mentation as follows.

Lemma 5.34

Let (X, T ) be a topological space, C the system of all closed sets, and B ⊂ P(X).

B is a base for T iff {Bc : B ∈ B} is a base for C.

Proof. Exercise. �

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
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18 Chapter 5. Topologies and filters

The analogue of Lemma 5.24 for the system of all closed sets is stated in the

following Lemma.

Lemma 5.35

Let X be a set and Ø 6= D ⊂ P(X). D is a base for the T -closed sets where T
is some topology on X iff it satisfies all of the following conditions:

(i) X ∈ D

(ii) Ø =
⋂
D

(iii) ∀A,B ∈ D ∃E ⊂ D E 6= Ø ∧ A ∪B =
⋂
E

Proof. This follows by Lemmas 5.24 and 5.34. �

Again, notice that the case D = Ø is excluded in Lemma 5.35 in order for the

intersection in property (ii) to be well-defined. If a system D satisfies property (i),

this obviously implies D 6= Ø.

As announced before we are often able to ”generate” a topological base from an

appropriate smaller subsystem, called a ”subbase”.

Definition 5.36

Given a topological space (X, T ), a system S ⊂ T is called subbase for T if

the system Ψ(S) is a base for T . We also say that S generates T . �

Generally, for a given topological base, there exist more than one subbase gen-

erating it.

There is a simple criterion to probe whether a given system of subsets of X is a

subbase for some topology on X as shown in the following Lemma. To this end

the notion of ”finite intersection property” is introduced.

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
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5.2 Topologies, bases, subbases 19

Definition 5.37

Let X be a set and C ⊂ P(X). We say that C has the finite intersection

property if Ø /∈ Ψ(C), i.e. for every H @ C with H 6= Ø we have
⋂
H 6= Ø. �

Lemma 5.38

Let X be a set and Ø 6= S ⊂ P(X). S is a subbase for some topology T on X

iff both of the following statements are true:

(i) S does not have the finite intersection property.

(ii) X =
⋃
S

In this case, S is also called a topological subbase on X, and the topology

generated by S is unique. Furthermore, T is the coarsest topology on X that

contains S.

Proof. The first claim is easy to verify (exercise).

Now let T1 and T2 be two topologies on X and S a subbase both for T1 and for

T2. By Definition 5.36 Ψ(S) is a base both for T1 and for T2. Hence, T1 = T2 by

Lemma 5.24.

To prove the last claim, let S be a topological subbase. Further let T1 be a

topology on X with S ⊂ T1. It follows that Θ Ψ (S) ⊂ T1. �

Notice again that we have excluded the case S = Ø in order for property (ii)

to be well-defined. Of course, if a system S satisfies property (i), this implies

S 6= Ø.

Notice that for any system S ⊂ P(X) the system S ∪ {Ø, X} is a topological

subbase. Alternatively, one could use the conventions that an intersection of an

empty system of sets is identical to X and that a union of an empty system of

sets is identical to Ø. In such a framework any arbitrary system of subsets of X

would be a subbase for some topology on X. In this account the intersection or
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union of an empty system of sets is not defined.

We now state a criterion for the second countability of a topology.

Lemma 5.39

Let (X, T ) be a topological space and S a topological subbase for T . If S is

countable, then T is second countable.

Proof. This follows by Lemma 3.71. �

Next we introduce some notions for the comparison of two subbases on the same

set.

Definition 5.40

Let S1 and S2 be two topological subbases on a set X. S1 is called finer, coarser,

strictly finer, strictly coarser than S2 if the topological bases Ψ(S1) and

Ψ(S2) have the respective property. S1 and S2 are called comparable if Ψ(S1)

and Ψ(S2) are comparable. �

Note that the notions defined in Definition 5.40 are well-defined since every

topological subbase generates a unique topological base. Furthermore, every

topological base is a subbase itself. When comparing two bases, no confusion

can arise whether this comparison is done in the sense of Definition 5.25 or

Definition 5.40 since Definition 5.40 refers to the corresponding notions for bases.

Definition 5.41

Given a set X, the system of all topological subbases on X is denoted by S (X).

�
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Remark 5.42

Given a set X, we have B(X) ⊂ S (X) and S (X) = Ψ−1 [B(X)]. For every

T ∈ T (X), the system of all subbases for T is given by (Θ Ψ)
−1 {T }. �

Similarly to the case of topological bases in Remark 5.28, the comparison between

two topological subbases may be expressed in terms of a pre-ordering as stated

by the following remark.

Remark 5.43

Given a set X, the pair
(
S (X),⊂

ΘΨ

)
is a pre-ordered space with a reflexive re-

lation. Let A,B ∈ S (X). The following statements are true by Lemma 5.5 (iv):

(i) A is finer than B ⇐⇒ B ⊂
ΘΨ
A

(ii) A is strictly finer than B ⇐⇒
(
B ⊂

ΘΨ
A
)
∧ ¬

(
A ⊂

ΘΨ
B
)

(iii) A and B are comparable ⇐⇒
(
B ⊂

ΘΨ
A
)
∨
(
A ⊂

ΘΨ
B
)

�

Remark 5.44

Let X be a set and A,B ⊂ P(X). By Lemma 5.5 (iv) we have

Θ Ψ(A) = Θ Ψ(B) ⇐⇒
(
B ⊂

ΘΨ
A
)
∧
(
A ⊂

ΘΨ
B
)

In this case, if A is a topological subbase, then also B is a topological subbase

and the topologies generated by A and B are the same. Furthermore, notice that

Θ Ψ(A) = Θ Ψ(B) need not imply A = B. �
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Definition 5.45

Let ξ = (X, T ) be a topological space and C the system of all ξ-closed sets. A

system S ⊂ C is called subbase for C or subbase for the ξ-closed sets if

{
⋃
H : H @ S, H 6= Ø} is a base for C. If the set X is evident from the context,

C is also called subbase for the T -closed sets. If the set X and the topology T
are evident, C is called subbase for the closed sets. �

Lemma 5.46

Let ξ = (X, T ) be a topological space, C the system of all ξ-closed sets, and

S ⊂ P(X). Then S is a subbase for T iff the system {Sc : S ∈ S} is a subbase

for C.

Proof. Exercise. �

Lemma 5.47

Let X be a set and Ø 6= S ⊂ P(X). S is subbase for the T -closed sets, where T
is some topology on X, iff both of the following conditions are satisfied:

(i) There exists H @ S such that H 6= Ø and X =
⋃
H.

(ii) Ø =
⋂
S

Proof. This follows from Lemmas 5.38 and 5.46. �

5.3 Filters

So far, in this chapter, we have considered systems of sets whose members are

subsets of a common set X as well as properties between members of such sys-

tems. Thereby we have not referred to any specific points of X. In much of

the following we consider particular points, values of maps at specific points,
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systems of sets that contain specific points etc. In particular this is the case in

all circumstances where convergence is examined, a notion that is introduced in

Chapter 6. To this end, in this section the notion of filter is introduced as a

fundamental concept. Note that the definitions and claims in this section do not

involve any topology on X.

Definition 5.48

Given a set X, a system F ⊂ P(X) is called a filter on X if it has all of the

following properties:

(i) Ø /∈ F

(ii) X ∈ F

(iii) ∀A,B ⊂ X A,B ∈ F =⇒ A ∩B ∈ F

(iv) ∀A,B ⊂ X (A ∈ F) ∧ (A ⊂ B) =⇒ B ∈ F

�

Properties (i) and (iii) in Definition 5.48 imply that F has the finite intersection

property.
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Remark 5.49

Let X be a set and F ⊂ P(X). F is a filter on X iff all of the following conditions

are satisfied:

(i) F 6= Ø

(ii) F 6= P(X)

(iii) Ψ(F) = F

(iv) Φ(F) = F

That is, the filters on X are precisely those systems that are fixed points of both

Ψ and Φ and additionally are non-trivial in the sense of (i) and (ii). �

When comparing two filters on the same set we use the same notions as for

topologies.

Definition 5.50

Let F1 and F2 be two filters on a set X. If F2 ⊂ F1, then F1 is called finer

than F2 and F2 is called coarser than F1. If F2 ⊂ F1 and F1 6= F2, then F1

is called strictly finer than F2 and F2 is called strictly coarser than F1. If

F1 ⊂ F2 or F2 ⊂ F1, the filters are called comparable. �

Definition 5.51

Given a set X, the system of all filters on X is denoted by F (X). �

Lemma and Definition 5.52

Let X be a set, A ⊂ F (X), and F ∈ A . The pair (A ,⊂) is an ordered space

in the sense ”≤”. F is called finest (coarsest) filter of A if it is a maximum

(minimum) of A . A has at most one finest and at most one coarsest filter.
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Proof. Exercise. �

Definition 5.53

Given a filter F on a set X, F is called ultrafilter if it is a weak maximum

of F (X) with respect to the ordering ⊂, i.e. if there is no filter on X that is

strictly finer than F . �

Given a specific filter it is often convenient to consider only a particular subsys-

tem, called filter base, instead of the entire filter. A filter base is defined by the

requirement that every member of the filter contains a member of the filter base.

More formally we have the following definition.

Definition 5.54

Given a filter F on a set X, a subsystem B ⊂ F is called filter base for F if

F = Φ(B). We also say that B generates F . �

Notice that this definition is similar to the definition of a base for a topology,

see Definition 5.20. The two are related by the concept of neighborhood system,

which is described below in Section 5.4.
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Lemma and Definition 5.55

Let X be a set and B ⊂ P(X). B is a filter base for some filter on X iff all of

the following conditions are satisfied:

(i) Ø /∈ B

(ii) B 6= Ø

(iii) ∀A,B ∈ B ∃C ∈ B C ⊂ A ∩B

In this case, B is also called filter base on X. The filter generated by B is

unique.

Proof. Assume that (i) to (iii) hold. Then clearly F = Φ(B) is a filter on X.

The converse implication and the uniqueness of the generated filter are obvious.

�

Notice that property (iii) in Lemma and Definition 5.55 is equivalent to Ψ(B) ⊂
Φ(B).

We now define appropriate notions for the comparison of two filter bases.

Definition 5.56

Let X be a set, and A and B two filter bases on X. A is called finer, coarser,

strictly finer, strictly coarser than B if Φ(A) and Φ(B) have the respective

property. A and B are called comparable if Φ(A) and Φ(B) are comparable.

�

This definition relies on the fact that the filter generated by a filter base is unique.

Also the fact that every filter is a filter base for itself is taken into account by

referring to the properties of filters in the definition.
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Definition 5.57

Given a set X, the system of all filter bases on X is denoted by F
B

(X). �

Remark 5.58

Given a set X, we have F (X) ⊂ F
B

(X) and F
B

(X) = Φ−1 [F (X)]. For every

F ∈ F (X), the system of all filter bases for F is given by Φ−1 {F}. �

The comparison of two filter bases on a set X may be expressed by the pre-

ordering ⊂
Φ

.

Remark 5.59

Given a set X, the pair
(
F
B

(X),⊂
Φ

)
is a pre-ordered space with a reflex-

ive relation. For every A,B ∈ F
B

(X), the following statements are true by

Lemma 5.5 (iii)

(i) A is finer than B ⇐⇒ B ⊂
Φ
A

(ii) A is strictly finer than B ⇐⇒
(
B ⊂

Φ
A
)
∧ ¬

(
A ⊂

Φ
B
)

(iii) A and B are comparable ⇐⇒
(
B ⊂

Φ
A
)
∨
(
A ⊂

Φ
B
)

�

Remark 5.60

Let X be a set and A,B ⊂ P(X). By Lemma 5.5 (iii) we have Φ(A) = Φ(B) iff

A ⊂
Φ
B and B ⊂

Φ
A. In this case, if A is a filter base on X, then B is also a

filter base on X and the two filters generated by A and B are the same. Notice

however that Φ(A) = Φ(B) need not imply A = B. �
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Definition 5.61

Given a filter F on a set X, a point x ∈ X is called a cluster point of F if

x ∈
⋂
F . F is called free if it has no cluster points, otherwise it is called fixed.

Similarly, for a filter base B on X, a point x ∈ X is called a cluster point

of B if it is a cluster point of Φ(B). B is called free if it has no cluster points,

otherwise it is called fixed. �

Remark 5.62

Given a filter base B on a set X and a point x ∈ X, x is a cluster point of B iff

x ∈
⋂
B. �

Example 5.63

Given a set X, the system B = { ]x,∞[ : x ∈ R} is a free filter base on R. �

Example 5.64

For every r ∈ ]0,∞[ , let Br =
{

(x, y) ∈ R2 : x2 + y2 ≤ r
}

. The system B =

{Br : r ∈ ]0,∞[ } is a fixed filter base on R2. �

Example 5.65

Given a set X, the system F = {X} is a filter. It is called the indiscrete filter

on X. �

Lemma 5.66

Given a set X and A ⊂ X with A 6= Ø, the system F = {F ⊂ X : A ⊂ F} is

a fixed filter on X. The system {A} is a filter base for F . F is an ultrafilter iff

A = {x} for some x ∈ X. In this case it is called the discrete filter at x.

Proof. Exercise. �
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Lemma and Definition 5.67

Let A and B be two filter bases on a set X, where A ∩ B 6= Ø for every A ∈ A,

B ∈ B. The system C = {A ∩B : A ∈ A, B ∈ B} is a filter base. It is called

the filter-base intersection of A and B. C is a supremum of {A,B} in the

pre-ordered space
(
F
B

(X),⊂
Φ

)
. Equivalently, the filter Φ(C) is the supremum

of {Φ(A),Φ(B)} in the ordered space (F (X),⊂), i.e. it is the coarsest filter on X

that is finer than Φ(A) and Φ(B).

Proof. Let A1, A2 ∈ A and B1, B2 ∈ B. We may choose A3 ∈ A such that

A3 ⊂ A1 ∩A2, and B3 ∈ B such that B3 ⊂ B1 ∩B2. It follows that

A3 ∩B3 ⊂ A1 ∩B1 ∩A2 ∩B2

Thus C is a filter base. We clearly have A ⊂
Φ
C and B ⊂

Φ
C. Assume that D is

a filter base on X with A ⊂
Φ
D and B ⊂

Φ
D. We show that C ⊂

Φ
D. Let A ∈ A

and B ∈ B. We may choose A′, B′ ∈ D such that A′ ⊂ A and B′ ⊂ B. There

exists D ∈ D such that D ⊂ A′ ∩B′. Thus we have D ⊂ A∩B. This shows that

C is a supremum. It clearly follows that Φ(C) is a supremum, which is unique

since ⊂ is an ordering. �

Lemma 5.68

Let X be a set and Bi ∈ F
B

(X) (i ∈ I) where I an index set. Furthermore we

define the system

B =
{⋂

j∈J Bj : J @ I, J 6= Ø, Bj ∈ Bj (j ∈ J)
}

If Ø /∈ B, then B ∈ F
B

(X). In this case, B is a supremum of {Bi : i ∈ I} in the

pre-ordered space
(
F
B

(X),⊂
Φ

)
. Equivalently, the filter Φ(B) is the supremum

of {Φ(Bi) : i ∈ I} in the ordered space (F (X),⊂), i.e. it is the coarsest filter

on X that is finer than Φ(Bi) for every i ∈ I.
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Proof. Assume that Ø /∈ B. It follows by Lemma 5.55 that B is a filter base on

X. Clearly, B is finer than Bi for every i ∈ I. It remains to show that every

filter base on X that is finer than Bi for every i ∈ I is also finer than B. Assume

that A is a filter base on X that is finer than Bi for every i ∈ I, and let B ∈ B.

We may choose J @ I with J 6= Ø and Bj ∈ Bj (j ∈ J) such that B =
⋂
j∈J Bj .

For every j ∈ J we may choose Aj ∈ A such that Aj ⊂ Bj by assumption.

There exists A ∈ A such that A ⊂
⋂
j∈J Aj . Hence A ⊂ B. This shows that

B is a supremum of {Bi : i ∈ I}. It clearly follows that Φ(B) is a supremum of

{Φ(Bi) : i ∈ I}, which is unique since ⊂ is an ordering. �

Notice that the filter base B defined in Lemma 5.68 is not a direct generalization

of Lemma and Definition 5.67, as the index set J may be a singleton. However,

it is easy to see that the generated filters are the same if J ∼ 2.

Definition 5.69

Let B be a filter base on a set X. B is called ultrafilter base if Φ(B) is an

ultrafilter. �

The following are a few characterizations of an ultrafilter base.

Lemma 5.70

Let B be a filter base on a set X. The following statements are equivalent.

(i) B is an ultrafilter base.

(ii) B is a weak maximum of F
B

(X) with respect to the pre-ordering ⊂
Φ

, i.e.

there is no filter base on X that is strictly finer than B.

(iii) ∀A ⊂ X A ∈ Φ(B) ∨ Ac ∈ Φ(B)

(iv) ∀A ⊂ X {A} ⊂
Φ
B ∨ {Ac} ⊂

Φ
B
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Proof. (i) and (ii) are clearly equivalent.

The equivalence of (iii) and (iv) is obvious as well.

To show that (i) implies (iv), let A ⊂ X and assume that neither {A} ⊂
Φ
B

nor {Ac} ⊂
Φ
B holds. It follows by Lemma and Definition 5.67 that each of the

systems

A = {B ∩A : B ∈ B} , C = {B ∩Ac : B ∈ B}

is a filter base and that A and C are both finer than B. We clearly have Φ(A) 6=
Φ(C). Hence at least one of the filter bases is strictly finer than B, which is a

contradiction to the fact that B is an ultrafilter base.

To show that (iv) implies (i), let A be a filter base on X that is finer than B, and

A ∈ A. Since {Ac} ⊂
Φ
B clearly does not hold, we have {A} ⊂

Φ
B. Therefore B

is finer than A, and hence B is an ultrafilter base. �

Note that Lemma 5.70 says that ultrafilters are precisely those filters that contain

either A or Ac for every A ⊂ X.

Lemma 5.71

Let X be a set. F is a fixed ultrafilter on X iff there is a point x ∈ X such that

F = {F ⊂ X : x ∈ F}.

Proof. If F is a fixed ultrafilter, it clearly has a unique cluster point by Lemma

5.70 (iii), say x. Let F ⊂ X with x ∈ F . Since F c /∈ F , we have F ∈ F by

Lemma 5.70 (iii). This shows that F = {F ⊂ X : x ∈ F}.
The converse is obvious. �

Theorem 5.72

For every filter base B on a set X there exists an ultrafilter base that is finer

than B.
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Proof. Let M = {Bi : i ∈ I} ⊂ F
B

(X) be the set of all filter bases on X that

are finer than B where I is an index set. The relation ⊂
Φ

is a pre-ordering on M .

Let L = {Bj : j ∈ J} (J ⊂ I) be a chain and

A =
{⋂

k∈K Bk : K @ J, K 6= Ø, Bk ∈ Bk (k ∈ K)
}

Since Ø /∈ A, A is a filter base that is finer than Bj for every j ∈ J by Lemma 5.68.

Thus A is an upper bound of L. Let C be a weak maximum of M according to

Theorem 3.56. To prove that C is an ultrafilter base, assume that D is a filter

base on X with C ⊂
Φ
D. Since B ⊂

Φ
C, we have B ⊂

Φ
D, and thus D ∈ M .

Since C is a weak maximum of M , C ⊂
Φ
D implies D ⊂

Φ
C. �

Corollary 5.73

For every filter F on a set X, there is an ultrafilter G that is finer than F .

Proof. By Theorem 5.72 we may choose an ultrafilter base B such that B is finer

than F . Then Φ(B) is an ultrafilter that is finer than F . �

5.4 Neighborhoods

We briefly outline the major notions defined in this Section. Given a topological

space (X, T ), a neighborhood U of a point x is defined as a—not necessarily

open—set for which there exists an open set V such that x ∈ V ⊂ U . The

system of all neighborhoods of a particular point x is called the neighborhood

system of x. One may also consider the ensemble of neighborhood systems for

every x ∈ X, which may be called the neighborhood system of the topological

space. The natural way to describe this is to define a structure relation on X

(cf. Definition 2.51), that contains the pair (x, U) for every point x and every

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
notions



5.4 Neighborhoods 33

neighborhood U of x. More formally this leads to Definitions 5.74 and 5.76

below. In order to describe the neighborhood system it would be possible to

define a function on X such that for each point x ∈ X the value f(x) is the

neighborhood system of x. The domain of such a function is X and its range is

a subset of P2(X). However, this turns out to be notationally disadvantageous

when choosing subsets of the neighborhood system of single points.

Definition 5.74

Let ξ = (X, T ) be a topological space and C the system of all ξ-closed sets. The

structure relation Nξ, or short N , defined by

(x, U) ∈ N ⇐⇒ ∃V ∈ T x ∈ V ⊂ U

is called the neighborhood system of ξ. The structure relation

N open
ξ = Nξ ∩ (X× T )

is called the open neighborhood system of ξ, also denoted by N open. The

structure relation

N closed
ξ = Nξ ∩ (X× C)

is called the closed neighborhood system of ξ, also denoted by N closed. �

Remark 5.75

Given a topological space (X, T ), the following statements hold:

(i) ∀x ∈ X ∀U ⊂ X (x, U) ∈ N open ⇐⇒ U ∈ T (x)

(ii) Φ′
(
N open) = Φ′(N ) = N

Note that we use the notation of Definition 1.51 in (i) and the map Φ′ defined

in Definition 5.6 in (ii). �
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We now introduce the neighborhood system of an arbitrary set A ⊂ X. The

special case in which A is a singleton leads to the definition of the neighborhood

system of a point. Remember that for a relation R on X we have defined

R {x} = {y ∈ X : (x, y) ∈ R} ,

R〈A〉 =
{
y ∈ X : ∀x ∈ A (x, y) ∈ R

}

Definition 5.76

Let N be the neighborhood system of a topological space (X, T ).

(i) For every A ⊂ X the system N〈A〉 is called the neighborhood system

of A, and every member is called a neighborhood of A.

(ii) For every A ⊂ X, the systems N open〈A〉 and N closed〈A〉 are called the

open and the closed neighborhood systems of A, respectively, and

every member is called an open (closed) neighborhood of A.

(iii) For every x ∈ X, the system N{x} = N〈{x}〉 is called the neighborhood

system of x. A member U ∈ N{x} is called neighborhood of x.

(iv) For every x ∈ X, the systems

N open{x} = N open〈{x}〉, N closed{x} = N closed〈{x}〉

are called the open and closed neighborhood systems of x, respec-

tively. Their members are respectively called the open and closed neigh-

borhoods of x.

�

Notice that for every open A ⊂ X, A is a neighborhoood of itself. Moreover, we
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have N〈Ø〉 = P(X), i.e. every subset of X is a neighborhood of the empty set.

We state a few more consequences of the preceding definitions in the following

Lemma.

Lemma 5.77

Let (X, T ) be a topological space and U, V ⊂ X. The following statements hold:

(i) U ∈ T ⇐⇒ ∀x ∈ U U ∈ N{x}

(ii) U ∈ T ⇐⇒ ∀A ⊂ U U ∈ N〈A〉

(iii) V ∈ N〈U〉 ⇐⇒ ∃W ∈ T U ⊂W ⊂ V

Proof. To prove (i) assume U ∈ N{x} holds for every x ∈ U . For each x ∈ U
we may choose Vx ∈ T such that x ∈ Vx ⊂ U . Hence U =

⋃
x∈U Vx ∈ T . The

converse is obvious.

(ii) is a direct consequence of (i).

To prove (iii) assume V ∈ N〈U〉. Then V ∈ N{x} for every x ∈ U . For each

x ∈ U , we may choose Wx ∈ T such that x ∈ Wx ⊂ V . Therefore U ⊂ W ⊂ V

where W =
⋃
x∈U Wx. The converse is obvious. �

Our definitions of neighborhood and neighborhood system are based on the no-

tion of topological space. In the following Lemma we list properties of the neigh-

borhood system. We then show that for a given structure relation with these

properties there is a unique topology such that the neighborhood system is this

structure relation.
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Lemma 5.78

The neighborhood system N of a topological space (X, T ) has the following

properties:

(i) ∀x ∈ X N{x} 6= Ø

(ii) ∀x ∈ X ∀U ∈ N{x} x ∈ U

(iii) ∀x ∈ X ∀U ∈ N{x} ∀V ⊃ U V ∈ N{x}

(iv) ∀x ∈ X ∀U, V ∈ N{x} U ∩ V ∈ N{x}

(v) ∀x ∈ X ∀U ∈ N{x} ∃V ∈ N{x} ∀ y ∈ V U ∈ N{y}

Proof. (i) to (iv) are obvious. To show (v), let x ∈ X and U ∈ N{x}. We may

choose V ∈ T such that x ∈ V ⊂ U . Then, for every y ∈ V , we have U ∈ N{y}.
�

Lemma 5.79

Let X be a set and N ⊂ X×P(X) such that properties (i) to (v) in Lemma 5.78

are satisfied. The system T =
{
U ⊂ X : ∀x ∈ U U ∈ N{x}

}
is the unique

topology on X such that N is the neighborhood system of (X, T ).

Proof. Notice that T is a topology on X by properties (i), (iii), and (iv). Let Nξ
be the neighborhood system of ξ = (X, T ). We show that Nξ = N . Fix x ∈ X.

First assume that U ∈ Nξ{x}. There exists V ∈ T such that x ∈ V ⊂ U .

Therefore V ∈ N{x} by definition of T , and thus U ∈ N{x}.
Now assume U ∈ N{x}. We may define V =

{
y ∈ X : U ∈ N{y}

}
. Fix y ∈ V .

By property (v) there is W ∈ N{y} such that U ∈ N{z} for every z ∈W . Thus

W ⊂ V , and therefore V ∈ N{y} by property (iii). It follows that V ∈ T . Since

x ∈ V ⊂ U by property (ii), we have U ∈ Nξ{x}.
The uniqueness of T follows by Lemma 5.77 (i). �
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In the following Lemma we list several statements that are satisfied by the neigh-

borhoods of subsets of X—in contrast to the neighborhoods of single points of X

considered in Lemma 5.78.

Lemma 5.80

The neighborhood system N of a topological space (X, T ) has the following

properties:

(i) ∀A ⊂ X ∀U ∈ N〈A〉 A ⊂ U

(ii) ∀A ⊂ X ∀U ∈ N〈A〉 ∀V ⊃ U V ∈ N〈A〉

(iii) ∀A ⊂ X ∀U, V ∈ N〈A〉 U ∩ V ∈ N〈A〉

(iv) ∀A ⊂ X ∀U ∈ N〈A〉 ∃V ∈ N〈A〉 U ∈ N〈V 〉

(v) For every index set I and every Ai ⊂ X (i ∈ I), we have

N
〈⋃

i∈IAi
〉

=
⋂
i∈I N〈Ai〉

Proof. (i) to (iii) and (v), follow by Lemma 5.77. To show (iv), let A ⊂ X and

U ∈ N〈A〉. We may choose V ∈ T such that A ⊂ V ⊂ U by Lemma 5.77 (iii).

Then V ∈ N〈V 〉 by Lemma 5.77 (ii), and therefore U ∈ N〈V 〉. �

Lemma 5.81

Let (X, T ) be a topological space and A ⊂ X with A 6= Ø. The system N〈A〉 is

a fixed filter on X.

Proof. It follows by Lemma 5.80 (i) to (iii) that N〈A〉 is a filter. This filter is

obviously fixed. �

Notice that in the following Lemma the statements (i) to (v) correspond to the

statements (i) to (v) in Lemma 5.80, the statement (vi) guarantees that M can
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be derived from a structure relation, and the statement (vii) excludes that the

system is empty for any A ⊂ X.

Lemma 5.82

Let X be a set and M : P(X) −→ P2(X) a map such that the following state-

ments hold:

(i) ∀A ⊂ X ∀U ∈M(A) A ⊂ U

(ii) ∀A ⊂ X ∀U ∈M(A) ∀V ⊃ U V ∈M(A)

(iii) ∀A ⊂ X ∀U, V ∈M(A) U ∩ V ∈M(A)

(iv) ∀A ⊂ X ∀U ∈M(A) ∃V ∈M(A) U ∈M(V )

(v) For every index set I and every Ai ⊂ X (i ∈ I), we have

M
(⋃

i∈IAi
)

=
⋂
i∈IM(Ai)

(vi) M(Ø) = P(X)

(vii) ∀A ⊂ X M(A) 6= Ø

There is a unique topology T on X, such that M(A) = N〈A〉 for every A ⊂ X,

where N is the neighborhood system of (X, T ).

Proof. We give two proofs. In the first one we use Lemma 5.79, while in the

second one we do not.

First proof:

We may define a relation N ⊂ X× P(X) by N{x} =M({x}) for every x ∈ X.

Then N has properties (i) to (v) in Lemma 5.78. There is a unique topology T
on X such that N is the neighborhood system of (X, T ) by Lemma 5.79. Fix
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A ⊂ X with A 6= Ø. Then we have

N〈A〉 =
⋂
x∈AN{x} =

⋂
x∈AM({x}) = M(A)

Moreover N〈Ø〉 = P(X).

Second proof:

We define T = {U ⊂ X : ∀A ⊂ U U ∈M(A)}. First we show that T is a topol-

ogy on X. Let Ui ∈ T (i ∈ I), where I is an index set, U =
⋃
i∈I Ui, and A ⊂ U .

Further let Ai = A ∩ Ui (i ∈ I). It follows that A =
⋃
i∈I Ai. We have

M(A) =M
(⋃

i∈IAi
)

=
⋂
i∈IM(Ai)

by (v). Moreover, for every i ∈ I, Ai ⊂ Ui implies Ui ∈ M(Ai), and thus

U ∈ M(Ai) by (ii). Hence we obtain U ∈ M(A). This proves that T is a

topology.

Let N be the neighborhood system of ξ = (X, T ). We show that N〈A〉 =M(A)

for every A ⊂ X. Clearly, N〈Ø〉 =M(Ø). Fix A ⊂ X with A 6= Ø.

First assume that U ∈ N〈A〉. There exists V ∈ T such that A ⊂ V ⊂ U .

Therefore V ∈M(A) by definition of T , and thus U ∈M(A).

Now assume U ∈ M(A), and define V =
⋃
{B ⊂ X : U ∈M(B)}. Then we

have

M(V ) = M
(⋃{

B ⊂ X : U ∈M(B)
})

=
⋂{
M(B) : B ⊂ X, U ∈M(B)

}
It follows that U ∈ M(V ). Hence U ∈ M(B) for every B ⊂ V by (v). Fix

B ⊂ V . Then there is W ∈ M(B) such that U ∈ M(W ) by (iv). Hence W ⊂ V ,

and thus V ∈ M(B) by (ii). It follows that V ∈ T . Since V ⊂ U by (i), we have

U ∈ N〈A〉.
The uniqueness follows by Lemma 5.77 (ii). �
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Lemma 5.81 says that the neighboorhood system of a non-empty set A ⊂ X is a

fixed filter. This suggests the idea to define the ”neighborhood base” of A as a

filter base for that filter. For a point x ∈ X, a neighborhood base is a subset of

the neighborhood system of x such that each neighboorhood contains a member

of the base. We begin with the definition of neighborhood base, continue with

the definition of neighborhood base of a subset of X, and then consider the

neighborhood base of a point of X as a special case. It is then shown below that

a neigborhood base of a subset is a filter base for the neighborhood system of

that subset.

Definition 5.83

Let N be the neighborhood system of a topological space ξ = (X, T ). A system

B ⊂ N is called neighborhood base of ξ if N = Φ′(B) where Φ′ is the map

defined in Definition 5.6. We also say that B generates N . �

In general, for a given topology there exists more than one neighborhood base.

Remark 5.84

Given a topological space ξ, the system N open is a neighborhood base of ξ by

Lemma 5.75 (ii). �

Definition 5.85

Let ξ = (X, T ) be a topological space and A ⊂ X. A system B ⊂ N〈A〉 is called

neighborhood base of A if Φ(B) = N〈A〉. If, in addition, A = {x} for some

x ∈ X, then B is called neighborhood base of x. �

Again, for a given topology and a given set A ⊂ X, in general, more than one

neighborhood base of A exists.
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Lemma 5.86

Let ξ = (X, T ) be a topological space, B a neighboorhood base of ξ, and x ∈ X.

Then B {x} is a neighborhood base of x.

Proof. This follows by Lemma 5.7 (i). �

Notice that, given a neighborhood base B of a topological space (X, T ) and

A ⊂ X, B〈A〉 need not be a neighborhood base of A, because generally equality

in Lemma 5.7 (iii) may not hold.

Remark 5.87

Let (X, T ) be a topological space and A ⊂ X. The following statements hold:

(i) Every neighborhood base of A is a filter base for N〈A〉.

(ii) The system N open〈A〉 is a neighborhood base of A by Lemma 5.77 (iii).

Notice that N closed〈A〉 need not be a neighborhood base of A. �

There is a straightforward way to obtain a neighborhood base of a topological

space from a topological base demonstrated in the following Lemma.

Lemma 5.88

Given a topological space ξ = (X, T ) and a base A for T . Then the structure

relation B defined by

(x, U) ∈ B ⇐⇒ U ∈ A(x)

is a neighborhood base of ξ. For every x ∈ X, A(x) is a neighborhood base of x

that has solely open member sets.

Proof. Let x ∈ X and V ∈ N{x}. We may choose W ∈ T such that x ∈W ⊂ V ,

and U ∈ A such that x ∈ U⊂W . Then (x, U) ∈ B. The second claim is obvious.
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�

We now address the following two questions: For a given topological space, can a

topological base be constructed from a neighborhood base? And: Without spec-

ifying a topology beforehand, when is a given structure relation a neighborhood

base of some topology?

Lemma 5.89

Let (X, T ) be a topological space and B a neighborhood base that has only open

member sets. The system B [X] =
⋃
x∈X B {x} is a topological base.

Proof. Exercise. �

Concerning the second question we proceed similarly as in the case of neighbor-

hood systems and derive a list of properties of a neighborhood base and then

show below that if a structure relation on a set X has these properties, then

there is a topology T on X such that the structure relation is a neighborhood

base of (X, T ).

Lemma 5.90

Let B be a neighborhood base of a topological space. B has the following prop-

erties:

(i) ∀x ∈ X B {x} 6= 0

(ii) ∀x ∈ X ∀U ∈ B {x} x ∈ U

(iii) ∀x ∈ X ∀U, V ∈ B {x} ∃W ∈ B {x} W ⊂ U ∩ V

(iv) ∀x ∈ X ∀U ∈ B {x} ∃V ∈ B {x} ∀y ∈ V ∃W ∈ B {y} W ⊂ U

Proof. This follows by Lemma 5.78. �
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Lemma 5.91

Let X be a set and B ⊂ X×P(X) such that properties (i) to (iv) in Lemma 5.90

are satisfied. There is a unique topology T on X such that B is a neighborhood

base of (X, T ).

Proof. The structure relation N = Φ′(B) satisfies conditions (i) to (v) in Lemma

5.78. Hence there exists a topology T on X by Lemma 5.79 such that N is

neighborhood system of (X, T ), and thus B is a neighborhood base of (X, T ).

�

Recall that a topological space that has a countable base is called second count-

able. The following definition refers to the cardinality of the neighborhood base

of every point of X.

Definition 5.92

Let ξ = (X, T ) be a topological space. If there is a neighborhood base B of ξ

such that B {x} is countable for every x ∈ X, then the space ξ or the topology

T is called first countable. �

Example 5.93

Given a set X, the discrete topology Tdis on X, and a point x ∈ X, the neigh-

borhood system of x is Tdis(x). Tdis is clearly first countable. �

Example 5.94

Given a set X, the indiscrete topology Tin on X, and a point x ∈ X, the neigh-

borhood system of x is {X}. �

Lemma 5.95

A second countable topological space (X, T ) is also first countable.
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Proof. This follows by Lemma 5.88. �

Lemma 5.96

Let (X, T ) be a first countable topological space and x ∈ X. There is a neigh-

borhood base {Bm : m ∈ N} of x such that all Bm (m ∈ N) are open and

∀m,n ∈ N m < n =⇒ Bn ⊂ Bm

Proof. By Lemma 5.88, we may choose a neighborhood base {Cm : m ∈ N}
for x such that all Cm (m ∈ N) are open. For every n ∈ N we define Bn =⋂
{Cm : m ∈ N, m ≤ n}. �

We conclude this section with a criterion for the comparison of two topologies

on the same set in terms of neighborhoods and neighborhood bases.

Lemma 5.97

Let T1 and T2 be two topologies on a set X, N1 and N2 their respective neigh-

borhood systems, and B1 and B2 two neighborhood bases generating N1 and N2,

respectively. The following three statements are equivalent:

(i) T2 ⊂ T1

(ii) ∀x ∈ X N2{x} ⊂ N1{x}

(iii) ∀x ∈ X B2{x} ⊂Φ
B1{x}

Proof. Since B1{x} is a filter base for N1{x}, and B2{x} is a filter base for N2{x}
by Remark 5.87 (i), statements (ii) and (iii) are equivalent by Lemma 5.59 (i).

The fact that (i) implies (ii) follows by the definition of neighborhood system.

The converse implication follows by Lemma 5.77 (i). �
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5.5 Interval topology

In this and in the next Section we discuss two specific kinds of topologies: those

associated to pre-orderings with full field, and those generated by pseudo-metrics.

Lemma and Definition 5.98

Given a pre-ordered space (X,R) where R has full field, the system

S =
{

]−∞, x[ , ]x,∞[ : x ∈ X
}
∪ {Ø}

is a topological subbase on X. The generated topology is called R-interval

topology, or short interval topology, and also written τ(R). If Y ⊂ X is

order dense, then also the system

R =
{

]−∞, y[ , ]y,∞[ : y ∈ Y
}
∪ {Ø}

is a subbase for the interval topology.

Proof. We first show that S is a topological subbase by Lemma 5.38. Since R

has full field, there is, for each x ∈ X, a point y ∈ X such that x ∈ ]−∞, y[ or

x ∈ ]y,∞[ . It follows that
⋃
S = X, and clearly S 6= Ø.

If Y is order dense, then S ⊂ Θ(R) by Remark 2.31, and therefore
⋃
R = X.

Thus R is a topological subbase. Moreover, Ψ(S) ⊂ Ψ Θ (R) ⊂ Θ Ψ (R) by

Lemma 5.4, and hence Θ Ψ (S) ⊂ Θ Ψ (R). Therefore R and S generate the

same topology. �

Notice that for some pre-ordered spaces (X,≺) the system

A =
{

]−∞, x[ , ]x,∞[ : x ∈ X
}

may contain Ø or may not have the finite intersection property. In these two

cases A alone (without explicitly including Ø) is a topological subbase.
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Under additional assumptions on the pre-ordered space, canonical bases for the

interval topology can be specified.

Lemma 5.99

Let (X,≺) be a pre-ordered space where ≺ has full field and the systems

S− =
{

]−∞, x[ : x ∈ X
}
∪ {Ø} , S+ =

{
]x,∞[ : x ∈ X

}
∪ {Ø}

satisfy Ψ(S−) = S− and Ψ(S+) = S+, that is S− and S+ are fixed points of Ψ.

Further let

S = S+ ∪ S− , A =
{

]x, y[ : x, y ∈ X, x ≺ y
}
∪ {Ø}

The system A ∪ S is a base for the interval topology. If ≺ has full domain and

full range, then A alone is a base for the interval topology.

Furthermore, let Y ⊂ X be an order dense set such that the systems

R− =
{

]−∞, x[ : x ∈ Y
}
∪ {Ø} , R+ =

{
]x,∞[ : x ∈ Y

}
∪ {Ø}

satisfy Ψ(R−) = R− and Ψ(R+) = R+. Moreover, let

R = R− ∪ R+ , B =
{

]x, y[ : x, y ∈ Y, x ≺ y
}
∪ {Ø}

Then B ∪ R is a base for the interval topology. If ≺ has full domain and full

range, then B alone is a base for the interval topology.

Proof. To prove that A ∪ S is a base for the interval topology, we show that

Ψ(S) = A ∪ S. Let Ø 6= A ∈ Ψ(S). We have

(A = AE) ∨ (A = AF ) ∨ (A = AE ∩AF )

where

AE =
⋂{

]x,∞[ : x ∈ E
}
, AF =

⋂{
]−∞, y[ : y ∈ F

}
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and E,F @ X are index sets. Since S− and S+ are fixed points of Ψ, there are

points x, y ∈ X such that AE = ]x,∞[ and AF = ]−∞, y[ .

To prove the second claim we show that Θ Ψ(S) = Θ(A) under the given con-

ditions. We may choose A, AE , and AF as above. Since ≺ has full domain, we

have

AE = ]x,∞[ =
⋃{

]x, z[ : z ∈ X, x ≺ z
}

by Remark 2.28. Thus, if A = AE , then A ∈ Θ(A). Similarly, since ≺ has full

range, we have

AF = ]−∞, y[ =
⋃{

]z, y[ : z ∈ X, z ≺ y
}

Hence, if A = AF , then A ∈ Θ(A). If A = AE ∩ AF , we have A = ]x, y[ and

therefore A ∈ Θ(A).

To see that B∪R is a base for the interval topology, we show that Ψ(R) = B∪R.

Let Ø 6= B ∈ Ψ(R). Since R− and R+ are fixed points of Ψ, we have either

B = ]u,∞[ or B = ]−∞, v[ or B = ]u, v[ where u, v ∈ Y .

The last claim follows by Remarks 2.28 and 2.31. �

Note that in the particular case in which ≺ is a connective pre-ordering each of

the systems S−, S+, R−, and R+ is a fixed point of Ψ by Lemma 3.60.

In order to handle conditions such as those of Lemma 5.99 in a stringent manner,

we define the following notions.

Definition 5.100

Let (X,≺) be a pre-ordered space. If the systems

S− =
{

]−∞, x[ : x ∈ X
}
∪ {Ø} , S+ =

{
]x,∞[ : x ∈ X

}
∪ {Ø}

are fixed points of Ψ, we say that ≺ has the interval intersection property.

If, in addition, ≺ has full domain and full range, then ≺ is called interval

relation. �
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Definition 5.101

The interval topology of (R, <), where < is the standard ordering in the sense

of ”<” on R, is called standard topology on R. The interval topology on

(R+, <) is called standard topology on R+. �

Remark 5.102

The system
{

]−∞, x[ , ]x,∞[ : x ∈ R
}

is a subbase for the standard topology

on R. The ordering < is an interval relation on R. Thus the system{
]x, y[ : x, y ∈ R, x < y

}
∪ {Ø}

is a base for the standard topology by Lemma 5.99. Moreover, the system{
]x, y[ : x, y ∈ D, x < y

}
∪ {Ø}

is a base for the same topology by Lemmas 4.46 and 5.99. Hence the standard

topology on R is second countable by Remark 4.45 and Lemma 3.69. �
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Remark 5.103

The system

S =
{

]−∞, x[ , ]x,∞[ : x ∈ R+

}
is a subbase for the standard topology on R+. Let

A =
{

]x, y[ : x, y ∈ R+, x < y
}
∪ {Ø}

The system S ∪ A is a base for the standard topology by Lemma 5.99. The

relation < has the interval intersection property. However it is not an interval

relation because it has a minimum. Further let

R =
{

]−∞, x[ , ]x,∞[ : x ∈ D+

}
, B =

{
]x, y[ : x, y ∈ D+, x < y

}
∪ {Ø}

The system R ∪ B is a base for the same topology by Lemmas 4.15 and 5.99.

Hence the standard topology on R+ is second countable by Corollary 4.3 and

Lemmas 3.69 and 3.70 . �

We now generalize the concept of interval topology to the case of a system of

pre-orderings on the same set X.
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Lemma and Definition 5.104

Let X be a set and R a system of pre-orderings on X where R has full field.

Then the system

S =
{

]−∞, x[R , ]x,∞[R : x ∈ X, R ∈ R
}
∪ {Ø}

is a topological subbase. The topology generated by S is called R-interval

topology, and written τ(R). Further let Y ⊂ X be R-dense in X. Then

Q =
{

]−∞, y[R , ]y,∞[R : y ∈ Y, R ∈ R
}
∪ {Ø}

is a subbase for the same topology.

Proof. To see that S is a topological subbase, note that for every x ∈ X there

is R ∈ R and y ∈ X such that x ∈ ]−∞, y[R or x ∈ ]y,∞[R . It follows that⋃
S = X, and clearly S 6= Ø.

To see the second claim, assume that Y is R-dense. Then S ⊂ Θ(Q) by Re-

mark 2.31, and therefore
⋃
Q = X. Thus Q is a topological subbase. Moreover,

Ψ(S) ⊂ Ψ Θ (Q) ⊂ Θ Ψ (Q) by Lemma 5.4, and hence Θ Ψ (S) ⊂ Θ Ψ (Q).

Therefore Q and S generate the same topology. �

Lemma 5.105

Let X be a set and R a system of pre-orderings on X where R is independent

and has full field. Further let S =
⋂
R. Then we have τ(R) ⊂ τ(S). If R is

finite, then τ(S) ⊂ τ(R)

Proof. This follows by Lemma 2.87. �

Example 4.51 is an important example of the construction defined in Defini-

tion 5.104. We introduce the following notion.
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Definition 5.106

Let n ∈ N, n ≥ 1, and (Xi, Ri) = (R, <) for every i ∈ N, 1 ≤ i ≤ n. Further let

X =×n

i=1
Xi and R =

{
p−1
i [Ri] : i ∈ N, 1 ≤ i ≤ n

}
. The R-interval topology

on Rn is called standard topology on Rn. �

Remark 5.107

With definitions as in Definition 5.106, the system

S =
{

]−∞, x[R , ]x,∞[R : x ∈ Dn, R ∈ R
}

is a subbase for the standard topology on Rn by Lemma 5.104. Since Ψ(S) is a

base, this topology is second countable by Remark 4.45 and Lemmas 3.69, 3.70,

and 3.71. Let S =
⋂
R. Since R is independent, the S-interval topology is the

standard topology on Rn by Lemma 5.105. Since S is an interval relation, the

system {
]x, y[ : x, y ∈ Rn, (x, y) ∈ S

}
∪ {Ø} ,

where the interval refers to the ordering S, is a base for this topology by

Lemma 5.99. Similarly, it is clear that the system{
]x, y[ : x, y ∈ Dn, (x, y) ∈ S

}
∪ {Ø}

is a base for the same topology. �

Similarly, a standard topology on any finite product of positive reals can be

defined as follows.

Definition 5.108

Let n ∈ N, n ≥ 1, and (Xi, Ri) = (R+, <) for every i ∈ N, 1 ≤ i ≤ n. Further

let R =
{
p−1
i [Ri] : i ∈ N, 1 ≤ i ≤ n

}
. The R-interval topology on Rn+ is called

standard topology on Rn+. �
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Remark 5.109

With definitions as in Definition 5.108, the system

S =
{

]−∞, x[R , ]x,∞[R : x ∈ Dn+, R ∈ R
}

is a subbase for the standard topology on Rn+ by Lemma 5.104. Since Ψ(S) is a

base, this topology is second countable by Corollary 4.3 and Lemmas 3.69, 3.70,

and 3.71. R is upwards independent, but not downwards independent. �

It is possible to construct other topologies on a pre-ordered space. While using all

improper intervals and the empty set as a subbase in Lemma and Definition 5.98,

we may use only the lower or only the upper segments, respectively supplemented

by the empty set, as subbase as done in the following Lemma.
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Lemma 5.110

Let (X,≺) be a pre-ordered space. If ≺ has full domain, then the system

S− =
{

]−∞, x[ : x ∈ X
}
∪ {Ø}

is a topological subbase on X. If ≺ has full range, then the system

S+ =
{

]x,∞[ : x ∈ X
}
∪ {Ø}

is a topological subbase on X.

Let Y ⊂ X be order dense. If ≺ has full domain, then the system

R− =
{

]−∞, y[ : y ∈ Y
}
∪ {Ø}

is a topological subbase on X. If ≺ has full range, then the system

R+ =
{

]y,∞[ : y ∈ Y
}
∪ {Ø}

is a topological subbase on X.

Proof. Exercise. �

Clearly, if a topological subbase is a fixed point of Ψ, it is a base for its generated

topology. In case of the interval topology it is, under certain conditions, even a

topology if we only include X to the set system.
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Lemma 5.111

Let (X,≺) be a totally ordered space in the sense of ”<”. We define the systems

S− =
{

]−∞, x[ : x ∈ X
}
∪ {Ø, X} ,

S+ =
{

]x,∞[ : x ∈ X
}
∪ {Ø, X}

If ≺ has the least upper bound property, then Θ(S−) = S− and Θ(S+) = S+. In

this case, S− and S+ are topologies on X.

Proof. Let I be an index set, xi ∈ X (i ∈ I), and A = {xi : i ∈ I}. If A has no

upper bound, then we have X =
⋃
i∈I ]−∞, xi[ . If A has an upper bound, let x

be the supremum of A. Then we have ]−∞, x[ =
⋃
i∈I ]−∞, xi[ . It follows that

Θ(S−) = S−. The second equation follows similarly by Theorem 2.49. Since S−
and S+ are fixed points of Ψ, the last claim follows. �

Example 5.112

Let < denote the standard ordering in the sense of ”<” on R. The system

T< =
{

]−∞, x[ : x ∈ R
}
∪ {Ø, X}

is a topology on R. The system{
]−∞, x[ : x ∈ D

}
∪ {Ø}

is a base for this topology. �
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Example 5.113

Let ≤ denote the standard ordering in the sense of ”≤” on R. Notice that we

have x ∈ ]−∞, x[ for every x ∈ R. The system{
]−∞, x[ : x ∈ R

}
∪ {Ø}

is a topological base. However, the system{
]−∞, x[ : x ∈ D

}
∪ {Ø}

is not a base for the generated topology. The conditions of Lemma 5.110 are not

satisfied as D is not order dense. �

5.6 Pseudo-metrics

In this Section we consider topologies generated by pseudo-metrics and metrics.

Some of the most important examples of metric spaces are the real numbers R
and their n-fold Cartesian product Rn together with the Euclidean metric. This

metric is only introduced in Chapter 8 as it requires the definition of the square

root function on the reals. The concept of pseudo-metric space can be generalized

to that of uniform space, which is a set together with a system of—generally more

than one—pseudo-metrics.

We start with the basic definitions.
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Definition 5.114

Given a set X, a pseudo-metric on X is a map d : X × X −→ R+ with the

following properties:

(i) ∀x ∈ X d(x, x) = 0

(ii) ∀x, y ∈ X d(y, x) = d(x, y) (symmetry)

(iii) ∀x, y, z ∈ X d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

The pair (X, d) is called pseudo-metric space. The map d is called metric

on X if the following statement holds instead of (i):

(i)′ ∀x, y ∈ X x = y ⇐⇒ d(x, y) = 0

In this case (X, d) is called metric space. �

Definition 5.115

Given a pseudo-metric space (X, d), d is called bounded if there is r ∈ R+ such

that

∀x, y ∈ X d(x, y) < r

�

Remark 5.116

Given a set X and a bounded pseudo-metric d on X, we have

sup
{
d(x, y) : x, y ∈ X

}
<∞

by Lemma 4.39. �
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Example 5.117

Let X be a set and (Y, d) a bounded pseudo-metric space. The map

D : Y X× Y X −→ R+ , D(f, g) = supx∈X d
(
f(x), g(x)

)
is a bounded pseudo-metric on Y X . If d is a metric, then D is a metric. �

Definition 5.118

Let (X, dX) and (Y, dY ) be pseudo-metric spaces and f : X −→ Y a surjective

map. f is called isometry if dY (f(x), f(y)) = dX(x, y) for every x, y ∈ X. �

In the following it is shown how a topology can be related to a given pseudo-

metric on a set X. In this sense, a pseudo-metric space is a special case of a

topological space.
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Lemma and Definition 5.119

Let (X, d) be a pseudo-metric space. We define the function

B : X× ]0,∞[ −→ P(X), B(x, r) = {y ∈ X : d(x, y) < r}

Further let R ⊂ ]0,∞[ such that for every K ∈ ]0,∞[ there exists r ∈ R with

r < K. The system

B =
{
B(x, r) : x ∈ X, r ∈ R

}
∪ {Ø}

is a topological base on X. The topology Θ(B) is called pseudo-metric topol-

ogy of (X, d). This topology is also denoted by τ(d). The definition of τ(d) is

independent of the choice of R. We say that d generates τ(d).

If d is a metric, then τ(d) is also called metric topology. For every r ∈ ]0,∞[

and x ∈ X, the set B(x, r) is τ(d)-open. It is called open sphere about x with

d-radius r. For every r ∈ ]0,∞[ and x ∈ X, the set {y ∈ X : d(x, y) ≤ r} is

τ(d)-closed. It is called closed sphere about x with d-radius r. Moreover,

the system

C =
{(
x,B(x, r)

)
: x ∈ X, r ∈ R

}
is a neighborhood base of (X, τ(d)).

Proof. The claims that B is a topological base on X and that closed spheres

are closed sets follow by Lemma and Definition 5.24 and the triangle inequality

(exercise).

Now it is clear that C is a neighborhood base.

To see that τ(d) is independent of the choice of the radii, let, for i ∈ {1, 2},
Ri ⊂ ]0,∞[ such that for every K ∈ ]0,∞[ there exists r ∈ Ri with r < K. We

denote by Ti (i ∈ {1, 2}) the respective pseudo-metric topologies. For i ∈ {1, 2},
the system

Ci =
{(
x,B(x, r)

)
: x ∈ X, r ∈ Ri

}
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is a neighborhood base of (X, Ti). For every x ∈ X we have C2{x} ⊂Φ
C1{x} and

C1{x} ⊂Φ
C2{x}. It follows by Lemma 5.97 that T1 = T2. �

Note that we may choose R = ]0,∞[ in Lemma and Definition 5.119.

Example 5.120

Let X be a set and d : X ×X −→ R+ a map with d(x, x) = 0 for every x ∈ X,

and d(x, y) = 1 for every x, y ∈ X with x 6= y. Then d is a bounded metric, and

τ(d) is the discrete topology on X. �

Example 5.121

Let X be a set and d : X×X −→ R+ a map with d(x, y) = 0 for every x, y ∈ X.

Then d is a bounded pseudo-metric, and τ(d) is the indiscrete topology on X.

�

Lemma 5.122

The function d : R × R −→ R+, d(x, y) = |x − y|, is a metric. The generated

topology τ(d) is the standard topology on R.

Proof. Exercise. �

Lemma and Definition 5.123

Let n ∈ N with n ≥ 1. The function

d : Rn× Rn −→ R+ , d(x, y) = max
{
|xk − yk| : k ∈ N, 1 ≤ k ≤ n

}
is a metric. It is called maximum metric on Rn.

Proof. Exercise. �
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It is shown in Chapter 8 that the topology generated by the maximum metric is

the standard topology on Rn.

Given a topological space one may raise the question whether there exists a

metric or pseudo-metric that generates it.

Definition 5.124

Given a topological space ξ = (X, T ), ξ is called pseudo-metrizable if there

exists a pseudo-metric d on X such that τ(d) = T . Similarly, ξ is called metriz-

able if there exists a metric d on X such that τ(d) = T . �

Given the fact that pseudo-metric and metric spaces are very important math-

ematical concepts, pseudo-metrizability and metrizability are central features a

topological space may or may not have.

The following Lemma provides a tool to compare the topologies generated by

two different pseudo-metrics on the same set X. In particular, it can be used to

prove that two specific different pseudo-metrics generate the same topology.

Lemma 5.125

Let X be a set. For i ∈ {1, 2} let di be a pseudo-metric on X and define the

function

Bi : X× ]0,∞[ −→ P(X), Bi(x, r) = {y ∈ X : di(x, y) < r}

That is, for i ∈ {1, 2}, x ∈ X, and r ∈ ]0,∞[ , the set Bi(x, r) is the open sphere

about x with di -radius r. τ(d1) is finer than τ(d2) iff for every x ∈ X and

r ∈ ]0,∞[ , there is s ∈ ]0,∞[ such that B1(x, s) ⊂ B2(x, r).

Proof. This follows by Lemma 5.97. �

The following Corollary is an application of Lemma 5.125. It shows that for
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every pseudo-metric space there is a pseudo-metric bounded by 1 that generates

the same topology as the original pseudo-metric.

Corollary 5.126

Let (X, d) be a pseudo-metric space. We define the functions e : X ×X −→ R+

where e(x, y) is the minimum of d(x, y) and 1, and

f : X ×X −→ R+, f(x, y) =
d(x, y)

1 + d(x, y)

Both e and f are pseudo-metrics on X. All three pseudo-metrics generate the

same topology. Further, if d is a metric, then each of the maps e and f is a

metric, too.

Proof. Exercise. �

We finally obtain the following result about pseudo-metric topologies.

Theorem 5.127

For every pseudo-metric space the generated topology is first countable.

Proof. We may choose R = D+\{0} in Lemma and Definition 5.119. Then R is

countable by Corollary 4.3. Hence there is a countable neighborhood base of x

for every x ∈ X by Lemma and Definition 5.119. �
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Chapter 6

Convergence and continuity
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This Chapter is devoted to the notion of convergence, and to the related topics

of limit points, adherence points, continuity of functions, as well as the closure,

interior, and boundary of sets. There are three different concepts of convergence,

which are interrelated: sequences, nets, and filters. Each of these concepts is

treated in one of the following Sections.

6.1 Sequences

The elementary concept of convergence uses sequences as defined in the following

Definition.

Definition 6.1

Given a set X, a sequence in X is a function x : N −→ X. It is denoted by

(xn : n ∈ N), or, if it is known from the context that x is a sequence, by the

short notations (xn) or xn. The value x(n) of x at a point n ∈ N is also denoted

by xn. �

In Chapter 5 we have introduced topological spaces and pseudo-metric spaces.

In both cases we may define, using sequences, the notions of convergence, limit

points, and adherence points. It is then demonstrated below that the respec-

tive definitions agree for a pseudo-metric space and the generated pseudo-metric

topology.

Definition 6.2

Let X be a set, (xn) a sequence in X, and ϕ(x) a formula. We say that ϕ(xn) is

true eventually, or short ϕ(xn) eventually, if there is N ∈ N such that ϕ(xn)

is true for every n ∈ N with N ≤ n. We say that ϕ(xn) is true frequently, or

short ϕ(xn) frequently, if, for every N ∈ N, there is n ∈ N, N ≤ n such that

ϕ(xn) is true. �
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Notice that Definition 6.2 is actually not a single definition but provides one def-

inition for each formula ϕ(x). In the remainder of the text the notions ”eventu-

ally” and ”frequently” are, however, always used together with specific formulae,

not with generic formula variables. Thus Definition 6.2 should be regarded as

an abbreviated form of writing down a finite number of Definitions. This issue

is similar to the one mentioned in the context of the Separation schema 1.4 and

the Replacement schema 1.47, see the discussion below Axiom 1.4.

Definition 6.3

Given a topological space (X, T ), a subset A ⊂ X, and a sequence (xn) in A,

a point x ∈ X is called limit point of (xn) if xn ∈ U eventually for every

U ∈ N{x}. In this case we say that (xn) converges to x, or write xn → x.

The set of all limit points of (xn) is denoted by limn xn. If (xn) has a limit

point, it is called convergent. If (xn) has a unique limit point, say x, we have

limn xn = {x}, and we also write limn xn = x. Further, we say that a point

x ∈ X is an adherence point of (xn) if xn∈ U frequently for every U ∈ N{x}.
The set of all adherence points of (xn) is denoted by adhn xn. If (xn) has a unique

adherence point, say x, we have adhn xn = {x}, and we also write adhn xn = x.

�
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Definition 6.4

Given a pseudo-metric space (X, d), a subset A ⊂ X, and a sequence (xn) in A,

a point x ∈ X is called limit point of (xn) if d(x, xn) < ε eventually for every

ε ∈ R, ε > 0. In this case we say that (xn) converges to x, or write xn → x.

Further we say that a point x ∈ X is an adherence point of (xn) if d(x, xn) < ε

frequently for every ε ∈ R, ε > 0. For the limit points and for the adherence

points of (xn) we use the same notations as for limit points and adherence points

of sequences in a topological space. �

Remark 6.5

Let (X, d) be a pseudo-metric space, (xn) a sequence in X, and x ∈ X. Since

D+ is dense in R+, we have:

(i) x ∈ limn xn ⇐⇒
(
d(x, xn) < ε eventually for every ε ∈ D+\{0}

)
(ii) x ∈ adhn xn ⇐⇒

(
d(x, xn) < ε frequently for every ε ∈ D+\{0}

)
�

Obviously a limit point of a sequence in a topological space or in a pseudo-metric

space is also an adherence point of the sequence. In general, a sequence (xn) can

have more than one adherence point. A sequence can also have more than one

limit point.

Lemma 6.6

Given a topological space (X, T ) and a sequence (xn) in X, a point x ∈ X is

a limit point of (xn) iff there is a neighborhood base B of x such that xn ∈ B
eventually for every B ∈ B.

Proof. Exercise. �
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The following Lemma ensures that the repeated definition of the same notions

in Definitions 6.3 and 6.4 is meaningful.

Lemma 6.7

Let (X, d) be a pseudo-metric space, (xn) a sequence in X, and x ∈ X. Then

(xn) converges to x with respect to d in the sense of Definition 6.4 iff it converges

to x with respect to τ(d) in the sense of Definition 6.3.

Proof. Exercise. �

Definition 6.8

Let X and Y be two sets, (xn) a sequence in X, and (yn) a sequence in Y . If

there exists a strictly increasing map f : N −→ N such that yn = xf(n) for every

n ∈ N, then (yn) is called subsequence of (xn), or short (yn) ⊂ (xn). �

Theorem 6.9

Given a pseudo-metric space (X, d) and a sequence (xn) in X, x is adherence

point of (xn) iff there exists a subsequence (yn) ⊂ (xn) such that yn → x.

Proof. Assume x ∈ adhn xn. We may choose a bijection f : N −→ D+\{0} by

Corollary 4.3. We define a map g : N −→ N where g(m) is the minimum of{
k ∈ N : k ≥ m, d(x, xk) < e

}
and e is the minimum of the finite set f [σ(m)]. g is clearly unbounded. We

further define a map h : N −→ N by Recursion as follows:

(i) h(0) = g(0)

(ii) h(σ(m)) is the minimum of {k ∈ ran g : k > h(m)} for m ∈ N

We have ranh = ran g by the Induction principle, and xg(m) → x. It follows that

xh(m) → x. Moreover, h is strictly increasing by definition.
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The converse is clear. �

The following result says that an increasing (decreasing) sequence that is bounded

converges, provided certain conditions on the ordering are satisfied.

Lemma 6.10

Let (X,<) be a totally ordered space where < is an interval relation and

has the least upper bound property, (xn) a bounded sequence in X, and

A = {xn : n ∈ N}. The following statements hold:

(i) If (xn) is increasing, then xn → supA with respect to the interval topology.

(ii) If (xn) is decreasing, then xn → inf A with respect to the interval topology.

Proof. In order to show (i), assume that (xn) is increasing. Since A has an upper

bound, it has a supremum by assumption. This supremum is unique by Lemma

and Definition 2.47. We define x = supA.

By Lemmas 5.99 and 5.88 the system

A =
{

]y, z[ : y, z ∈ X, y < x < z
}

is a neighborhood base of x. Now let y, z ∈ X with y < x < z. Assume there

is no m ∈ N such that xm ∈ ]y, z[ . Then y is an upper bound of A, which is a

contradiction. Hence there is n ∈ N such that xm ∈ ]y, z[ for every m ∈ N with

m ≥ n since (xn) is increasing.

To see (ii), notice that A has a greatest lower bound if it has a lower bound, by

Theorem 2.49. The remainder of the proof is similar to that of (i). �

Remark 6.11

Notice that (R, <) satisfies the conditions of Lemma 6.10 by Lemmas 5.102

and 4.39. �
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Lemma 6.12

Let (xn) be a sequence in R+\{0}. If (xn) is increasing and unbounded, then

x−1
n → 0 with respect to the standard topology on R.

Proof. Let y ∈ R+\{0}. Under the stated conditions, there is m ∈ N such that

xn > y−1 for every n ∈ N with n > m. Hence x−1
n < y for n ∈ N, n > m by

Corollary 4.27 and Remark 5.102. �

We may compare the convergence properties of a sequence with respect to two

different topologies on the same set. To this end we introduce the following

notions.

Definition 6.13

Let X be a set and T1 and T2 be two topologies on X. Then T1 is called

sequentially stronger than T2 if xn → x with respect to T1 implies xn → x

with respect to T2 for every sequence (xn) in X and every x ∈ X. T1 and T2 are

called sequentially equivalent if T1 is sequentially stronger than T2 and vice

versa. �

The following is an intuitive result that relates the comparison of two topologies

on the same set to the comparison of sequence convergence.

Lemma 6.14

Let X be a set and T1 and T2 be two topologies on X. If T1 is finer than T2,

then it is also sequentially stronger.

Proof. Assume that T1 is finer than T2 and let (xn) be a sequence in X, x ∈ X,

and xn → x with respect to T1. For i ∈ {1, 2} let Ni be the neighborhood system

of (X, Ti). We have N2{x} ⊂ N1{x} by Lemma 5.97. Thus xn → x with respect

to T2. �
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The condition under which the converse is true is proven in Section 6.5 because

a result about the closure of sets is required that is not derived before.

Lemma and Definition 6.15

Let X and Y be two sets, f : X −→ Y a map, A ⊂ X, and (xn) a sequence in A.

Then (f(xn) : n ∈ N) is a sequence in Y , also denoted by (f(xn)) or f(xn).

Proof. This is clear. �

6.2 Nets

In this Section the concept of sequences is generalized by the introduction of

nets.

Definition 6.16

Given a set X and a directed space (D,≤), a function x : D −→ X is called a

net in X. It is denoted by (xn : n ∈ D), or, if it is known from the context

that x is a net with some domain D, by the short notations (xn) or xn. The

value x(n) of x at a point n ∈ D is also denoted by xn. �

Note that (N,≤) is a directed space. Therefore, given a set X, the nets in X that

are of the form (xn : n ∈ N), i.e. those where the directed set is N, are precisely

the sequences in X. In this case the definitions of the notations (xn : n ∈ N),

(xn), and xn for nets in Definition 6.16 agree with the respective definitions

for sequences in Definition 6.1. Many of the illustrative properties of sequences

generalize to similar properties of nets.
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Definition 6.17

Let X be a set, (xn : n ∈ D) a net in X, and ϕ(x) a formula. We say that ϕ(xn)

is true eventually, or short ϕ(xn) eventually, if there is N ∈ N such that ϕ(xn)

is true for every n ∈ N with N ≤ n. We say that ϕ(xn) is true frequently, or

short ϕ(xn) frequently, if, for every N ∈ N, there is n ∈ N with N ≤ n such

that ϕ(xn) is true. �

Notice that in the case D = N Definition 6.17 agrees with Definition 6.2 where the

same notions are defined for sequences. Regarding the usage of formula variables

in Definition 6.17 the same remarks apply as with respect to Definition 6.2.

Definition 6.18

Given a topological space (X, T ), a subset A ⊂ X, and a net (xn : n ∈ D)

in A, a point x ∈ X is called limit point of (xn) if xn∈ U eventually for every

U ∈ N{x}. In this case we say that (xn) converges to x, or write xn → x. The

set of all limit points of (xn) is denoted by limn xn. If (xn) has a limit point,

it is called convergent. If (xn) has a unique limit point, say x, we also write

limn xn = x. Further, we say that a point x ∈ X is an adherence point of

(xn) if xn ∈ U frequently for every U ∈ N{x}. The set of all adherence points

of (xn) is denoted by adhn xn. If (xn) has a unique adherence point, say x, we

also write adhn xn = x. �

Notice that every limit point of a net (xn) is also an adherence point. A net can

have more than one limit point. We remark that in the caseD = N Definition 6.18

agrees with the Definition 6.3.
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Example 6.19

Let (X, T ) be a topological space, x ∈ X, and ≤ the relation on N{x} that is

defined by

U ≤ V ⇐⇒ V ⊂ U

Then (N{x} ,≤) is a directed space (which justifies the notation ≤). We may

choose a point xU ∈ X for each U ∈ N{x}. Then (xU : U ∈ N{x}) is a net in X

and xU → x.

Similarly, if B is a neighborhood base of x and the relation ≤ on B is defined

as above for U, V ∈ B, then (B,≤) is a directed space. We may choose a point

xB ∈ X for each B ∈ B. Then (xB : B ∈ B) is a net in X and xB → x. �

The analogue of Lemma 6.6 also holds for nets.

Lemma 6.20

Given a topological space (X, T ) and a net (xn : n ∈ D) in X, a point x ∈ X
is a limit point of (xn) iff there is a neighborhood base B of x such that xn ∈ B
eventually for every B ∈ B.

Proof. Exercise. �

In the case of a pseudo-metric topology we have the following characterization

of convergence.

Lemma 6.21

Let (X, d) be a pseudo-metric space, (xn : n ∈ D) a net in X, and x ∈ X.

(xn) converges to x with respect to τ(d) iff the net (d(xn, x) : n ∈ D) converges

to 0 with respect to the standard topology on R+.

Proof. Exercise. �
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Remark 6.22

Let (xn) be a net in R and x ∈ R. Then we have:

xn → x ⇐⇒ |xn − x| → 0

where the limit on the left-hand side is with respect to the standard topology

on R and the limit on the right-hand side is with respect to the standard topology

on R+. �

We now introduce subnets, which are the analogue of subsequences as defined in

Definition 6.8.

Definition 6.23

Given two sets X and Y , and a net (xn : n ∈ D) in X, a net (ym : m ∈ E) in Y

is called subnet of (xn) if there is a map f : E −→ D such that

(i) ∀m ∈ E ym = xf(m)

(ii) ∀n ∈ D ∃m ∈ E ∀p ∈ E p ≥ m =⇒ f(p) ≥ n

We also use the short notation (ym) ⊂ (xn). �

Lemma 6.24

Given a topological space (X, T ), a net (xn) in X, and a subnet (ym) ⊂ (xn),

the following statements hold:

(i) limn xn ⊂ limm ym

(ii) adhm ym ⊂ adhn xn

Proof. Exercise. �

Lemma and Definition 2.85 can be used to derive the analogue of Theorem 6.9
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for nets.

Theorem 6.25

Given a topological space (X, T ) and a net (xn : n ∈ D) in X, a point x ∈ X
is adherence point of (xn) iff there is a subnet (yr : r ∈ E) ⊂ (xn) such that

yr → x.

Proof. Assume that x ∈ adhn xn. Let the relation ≤ on N{x} be defined as in

Example 6.19. We define

E =
{

(n,U) ∈ D ×N{x} : xn ∈ U
}

and the relation ≤ on E as the restriction to E of the relation introduced in

Lemma and Definition 2.85. Then (E,≤) is a directed space.

[The relation ≤ is clearly transitive and reflexive. Let (m,U), (n, V ) ∈ E,

and W = U ∩ V . Then we have W ∈ N{x}, and there is k ∈ N such that

k ≥ m,n and xk ∈W . It follows that ≤ is a directive relation on E.]

Further let p : D × N{x} −→ D be the projection on the first component, and

(yr : r ∈ E) the net in X such that y = x ◦ p. Then (yr) clearly is a subnet

of (xn). Furthermore, yr → x.

The converse is clear. �

The following Theorem states the existence of a diagonal net that has among its

limit points the limit points of iterated limits.
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Theorem 6.26 (Iterated limits)

Let (X, T ) be a topological space and (D,≤) a directed space. Further let

(Em,≤) be a directed space for every m ∈ D and F =
⋃
m∈D {m} × Em. Then

there exists a net (Tr : r ∈ R) in F such that for every map S : F −→ X

and every map S′ : D −→ X with S′(m) ∈ limn S(m,n) (m ∈ D) we have

limm S
′(m) ⊂ limr S ◦ T (r). If N closed is a neighborhood base, then equality

holds instead of ”⊂”.

Proof. We define the product directed space (R,≤) where R = D×P and P =

×m∈D Em, the projections pm : P −→ Em (m ∈ D), and the net T : R −→ F ,

T (m, e) = (m, pm(e)) for m ∈ D and e ∈ P . Now let S and S′ be two functions

satisfying the stated conditions.

If S′′∈ limm S
′(m), and U ∈ N open {S′′}, then there is M ∈ D such that S′(m) ∈

U for every m ∈ D with m ≥ M . We may choose e ∈ P such that S(m,n) ∈ U
for every m ∈ D with m ≥ M and every n ∈ Em with n ≥ pm(e). Hence,

S ◦ T (m, e′) ∈ U for every (m, e′) ∈ R with (m, e′) ≥ (M, e).

Conversely, assume that N closed is a neighborhood base and let S′′ ∈ limr S ◦
T (r). Further let U ∈ N closed {S′′}. There are M ∈ D, e ∈ P such that

S(m, pm(e′)) ∈ U for every (m, e′) ∈ R with (m, e′) ≥ (M, e). Then, for every

m ∈ D with m ≥ M , we have S(m,n) ∈ U for n ∈ Em, n ≥ pm(e). It follows

that limn S(m,n) ⊂ U for every m ∈ D, m ≥M . Thus S′′∈ limm S
′(m). �

Lemma and Definition 6.27

Let X and Y be sets, f : X −→ Y a map, A ⊂ X, and (xn : n ∈ D) a net in A.

Then (f(xn) : n ∈ D) is a net in Y , and also denoted by (f(xn)) or f(xn).

Proof. This is clear. �

The following construction is useful in the context of product spaces.
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Proposition 6.28

Let (Di, Ri) (i ∈ I) be directed sets where I is an index set, (D,R) the product

directed set, and pi : D −→ Di (i ∈ I) the projections. Further let (X, T ) be

a topological space, A ⊂ X, j ∈ I, and x : Dj −→ A a net in A. The net

y : D −→ A, y(r) = x
(
pj(r)

)
, is a subnet of (xn). Moreover we have

ran y = ranx , limn xn = limr yr , adhn xn = adhr yr

Proof. Exercise. �

Definition 6.29

Let I be an index set. For every i ∈ I let (Di, Ri) be a directed set, (Xi, Ti)
be a topological space, Ai ⊂ Xi , and (xin : n ∈ Di) a net in Ai . Let (D,R)

be the product directed set and pi : D −→ Di (i ∈ I) the projections. Further

let X =×i∈I Xi and qi : X −→ Xi (i ∈ I) be the corresponding projections.

Moreover let A =×i∈I Ai . The net x : D −→ A defined by qi
(
x(r)

)
= xi

(
pi(r)

)
for every i ∈ I and r ∈ D is called product net and denoted by

∏
i∈I (xin). If

I = σ(n)\m for some m,n ∈ N with m < n, then we also write
∏n
k=m(xik) for

the product net. If I = N\m for some m ∈ N, then we also write
∏∞
k=m(xik) for

the product net. �

Lemma 6.30

With definitions as in Definition 6.29 we have for every i ∈ I:

limr qi(xr) = limn x
i
n , adhr qi(xr) = adhn x

i
n

Proof. This follows by Propositon 6.28. �
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6.3 Filters

We have introduced the notion of filter in Section 5.3. The concept of filter can

be widely used as an alternative to nets when probing convergence and related

properties. Although in many cases the usage of nets seems more illustrative,

there are cases where filters are advantageous.

Definition 6.31

Given a topological space (X, T ) and a filter F on X, a point x ∈ X is called

limit point of F if N{x} ⊂ F . In this case we say that F converges to x,

written F → x. If F has a limit point, it is called convergent. The set of

all limit points of F is denoted by limF . Further, a point x ∈ X is called an

adherence point of F if U ∩ F 6= Ø for every U ∈ N{x} and every F ∈ F .

The set of all adherence points of F is denoted by adhF . Let B ⊂ F be a filter

base for F . A point x ∈ X is called limit point of B if it is a limit point of F .

In this case we say that B converges to x, written B → x. A point x ∈ X is

called adherence point of B if it is an adherence point of F . The set of all

limit (adherence) points of B is denoted by limB (adhB). �

Example 6.32

Given a topological space (X, T ) and a point x ∈ X, we obviously have

N{x} → x. �

Example 6.33

The filter in Example 5.63 has no adherence points. �

We now establish a connection between sequences and filters, similarly to that

between sequences and nets in Section 6.2. The agreement of the respective limit

and adherence points is shown.
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Lemma and Definition 6.34

Given a set X and a sequence (xn) in X, the system

F =
{
F ⊂ X : xn ∈ F eventually

}
is a filter. We say that the sequence generates F . The system B =

{Bn : n ∈ N} where Bn = {xk : k ≥ n} (n ∈ N) is a filter base for F . We

also say that the sequence generates B.

Proof. B is a filter base by Lemma and Definition 5.55. Clearly, F = Φ(B). �

Lemma 6.35

Let (X, T ) be a topological space, (xn) a sequence in X, and F the filter gener-

ated by (xn). We have limn xn = limF and adhn xn = adhF .

Proof. Exercise. �

For a given set X, Lemma and Definition 6.34 introduces an injective map from

the system of all sequences in X to the system of all filters on X, which is clearly

not bijective in general.

Next, two types of connections between nets and filters on a set X are established

and the relationship between their limit and adherence points is investigated.

In the first case a net, the so-called associated net, is defined for a given filter.

However, the limit points and the adherence points of the filter and the associated

net are generally not the same.
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Lemma and Definition 6.36

Let X be a set and denote by ≤ the relation ⊃ on P(X). Further let F be a

filter on X and B a filter base for F . Then both (B,≤) and (F ,≤) are directed

spaces. We may choose a point xF ∈ F for each F ∈ F . Then (xF : F ∈ F)

is a net in X. Similarly, we may choose a point xB ∈ B for each B ∈ B. Then

(xB : B ∈ B) is a net in X. If a net in X can be constructed in this way, it is

called associated with F or B, respectively.

Proof. This is obvious. �

Lemma 6.37

Let (X, T ) be a topological space, F a filter on X, B a filter base for F , and

(xF : F ∈ F) and (xB : B ∈ B) nets associated with F and B, respectively. Then

the following two statements hold:

(i) limF ⊂ limF xF

(ii) limF ⊂ limB xB

(iii) adhF xF ⊂ adhF

(iv) adhB xB ⊂ adhF

Proof. To see (i), let x ∈ limF and U ∈ N{x}. Since U ∈ F , it follows that

xV ∈ U for V ∈ F , V ≥ U .

To show (ii), let x ∈ limF and U ∈ N{x}. Since U ∈ F , there is B ∈ B such

that B ⊂ U . It follows that xA ∈ U for A ∈ B, A ≥ B.

In order to prove (iii), let x ∈ adhF xF , F ∈ F , and U ∈ N{x}. Then there is

xG with G ≥ F such that xG ∈ U . Since we also have xG ∈ F , it follows that

F ∩ U 6= Ø.

To see (iv), let x ∈ adhB xB , F ∈ F , and U ∈ N{x}. We may choose B ∈ B
such that B ⊂ F . Then there is xA with A ≥ B such that xA ∈ U . Since we
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also have xA ∈ F , it follows that F ∩ U 6= Ø. �

We now show how a filter on X can be defined for a given net in X, and a net in X

can be defined for a given filter on X, such that when starting with any filter

and performing both steps the original filter is obtained. Note that generally

there does not exist any bijection between all nets in X and all filters on X. In

fact, there exists no set that contains every directed space, and therefore there

is no set that contains every net in X. However, limit points and adherence

points agree between corresponding nets and filters in this approach, so a true

equivalence of the two concepts is demonstrated.

Lemma and Definition 6.38

Given a set X and a net (xn : n ∈ D) in X, the system

F =
{
F ⊂ X : xn ∈ F eventually

}
is a filter. We say that (xn) generates F . The system B = {Bn : n ∈ D}
where Bn = {xk : k ≥ n} (n ∈ D) is a filter base for F . We also say that (xn)

generates B.

Proof. B is a filter base by Lemma and Definition 5.55. Clearly, we have F =

Φ(B). �

Notice that Lemma and Definition 6.38 does not refer to any topology on X.

Lemma 6.39

Let (X, T ) be a topological space, (xn) a net in X, F the filter generated by (xn),

and x ∈ X. We have limn xn = limF and adhn xn = adhF .

Proof. Exercise. �
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Lemma and Definition 6.40

Let X be a set, F a filter on X, B a filter base for F , and

D =
{

(x,B) : x ∈ B ∈ B
}

Let the relation ≤ on D be defined as follows:

(x,B) ≤ (y, C) ⇐⇒ C ⊂ B

Then (D,≤) is a directed space (which justifies the notation). The net

(xn : n ∈ D) in X where x(x,B) = x for every (x,B) ∈ D is called generated

by B.

The filter generated by (xn) is F .

Proof. (D,≤) clearly is a directed space.

Let G be the filter generated by (xn).

To see that G ⊂ F , let G ∈ G. Then there is n ∈ D such that xk ∈ G for

k ∈ D, k ≥ n. Moreover there is B ∈ B such that n = (xn, B). Then we have

xk ∈ B for k ∈ D, k ≥ n. Now let x ∈ B. Then (x,B) ≥ (xn, B), and therefore

x = x(x,B) ∈ G. Thus we have B ⊂ G. It follows that G ∈ F .

Conversely, let B ∈ B. We may choose x ∈ B and define n = (x,B). It follows

that xk ∈ B for k ∈ D, k ≥ n. Thus we obtain B ∈ G. �

Notice that also Lemma and Definition 6.40 does not refer to any topology on X.

The following is the analogue to Theorems 6.9 and 6.25 where similar results for

sequences and nets are proven, respectively.

Theorem 6.41

Let (X, T ) be a topological space and F a filter on X. A point x ∈ X is an

adherence point of F iff there is a filter G finer than F such that G → x.
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Proof. First let x ∈ adhF . Then the system

G =
{
F ∩ U : F ∈ F , U ∈ N{x}

}
is a filter. Moreover, we have F ⊂ G and G → x.

Conversely, if there exists a filter G finer than F with G → x, then N{x} ⊂ G.

It follows that F ∩ U 6= Ø for every F ∈ F and U ∈ N{x}. �

We now briefly analyse how filter bases behave under mappings und thereby

introduce the notions of image filter and inverse image filter.

Lemma and Definition 6.42

Let X and Y be two sets, B a filter base on X, and f : X −→ Y a map. Then

f JB K is a filter base on Y . The generated filter Φ (f JB K) is called image filter

of B under f .

Proof. Exercise. �

Notice that, even if B in Lemma and Definition 6.42 is a filter on X, the image

f JB K need not be a filter on Y .

Lemma 6.43

With definitions as in Lemma and Definition 6.42 we have Φ (f JB K) =

Φ (f JΦ(B)K), that is the image filter of a filter base and of its generated filter are

the same.

Proof. Exercise. �

Lemma and Definition 6.44

Let X and Y be two sets, B a filter base on Y , and f : X −→ Y a surjective map.

Then f−1 JB K is a filter base for a filter on X. The generated filter Φ
(
f−1 JB K

)
is called inverse image filter of B under f .
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Proof. Exercise. �

Again, f−1 JB K need not be a filter on X, even if B is a filter on Y .

6.4 Continuous functions

The topic of this Section are continuous functions. We introduce three types of

continuity and then show how they are interrelated. The first one does not refer

to any topology or pseudo-metric. It is based on two filters, one on the domain

of the function and the other on its range. Moreover, it is a local definition, i.e.

it refers to a single point of the domain. The second definition is based on two

topologies, one on the domain and the other on the range. There we introduce

both continuity in a point and continuity of the whole function. The third type of

continuity is introduced in the context of pseudo-metric spaces and a priori does

not refer to any topology. Also in this case a local and global form of continuity

is defined. It is then shown that continuity with respect to pseudo-metrics is

equivalent to continuity with respect to the generated topologies. Finally we

analyse the special case of interval topologies.

Lemma and Definition 6.45

Let X, Y be two sets, f : X −→ Y a function, x ∈ X, y = f(x), Fx a filter on X

such that x is a cluster point of Fx , and Fy a filter on Y such that y is a cluster

point of Fy . f is called Fx -Fy -continuous in x if Fy ⊂Φ
f JFxK .

Further, let Bx and By be filter bases for Fx and Fy, respectively. Then f is

Fx -Fy -continuous in x iff By ⊂Φ
f JBxK .

Proof. Exercise. �
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Definition 6.46

Given two topological spaces (X, TX), (Y, TY ), a map f : X −→ Y , and a point

x ∈ X, f is called TX -TY -continuous in x, or short continuous in x, if

f−1 J TY (f(x)) K ⊂ TX . �

The following Theorem shows how the two types of continuity are related and

provides various characterizations of continuity of a function in a point.

Theorem 6.47

Given two topological spaces (X, TX) and (Y, TY ), a map f : X −→ Y , a subbase

SY for TY , a point x ∈ X, and a neighborhood base E of x, the following

statements are equivalent:

(i) f is continuous in x.

(ii) f−1 JSY (f(x)) K ⊂ TX

(iii) SY (f(x)) ⊂
Φ
f JE K

(iv) f−1 JN{f(x)}K ⊂ N{x}

(v) N{f(x)} ⊂
Φ
f JN{x}K , i.e. f is N{x}-N{f(x)}-continuous in x.

(vi) For every filter base B on X, B → x implies f JB K→ f(x).

(vii) For every net (xn) in X, xn → x implies f(xn)→ f(x).

Proof. We show the equivalence of (i) to (iv), and then the equivalence of (iv)

to (vii).

The implication from (i) to (ii) is clear.

To show that(ii) implies (iii), let S ∈ SY (f(x)). Then we have f−1 [S] ∈ TX by
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assumption. We may choose B ∈ E such that B ⊂ f−1 [S]. It follows that

f [B] ⊂ f
[
f−1 [S]

]
⊂ S

To see that (iii) implies (iv), let U ∈ N{f(x)}. There are Si ∈ SY (i ∈ I), where

I is a finite index set, such that f(x) ∈ Si for every i ∈ I and S ⊂ U where

S =
⋂
i∈I Si. For every i ∈ I, we may choose Bi ∈ E such that f [Bi] ⊂ Si by

assumption. We define B =
⋂
i∈I Bi. It follows that x ∈ B ⊂ f−1 [U ].

To show that (iv) implies (i), let U ∈ TY with f(x) ∈ U . Further let z ∈ f−1 [U ].

By Lemma 5.77 (i) we have U ∈ N{f(z)}, and therefore f−1 [U ] ∈ N{z} by

assumption. Thus f−1 [U ] ∈ TX by Lemma 5.77 (i).

To show that (iv) implies (vii), let (xn : n ∈ D) be a net in X with xn → x, and

let U ∈ N{f(x)}. By assumption we have f−1 [U ] ∈ N{x}. There is n ∈ D such

that xk ∈ f−1 [U ] for k ∈ D, k ≥ n. It follows that f(xk) ∈ U for k ∈ D, k ≥ n.

To prove that (vii) implies (vi), let B be a filter base on X with B → x. Further

let F = Φ(B), (xn : n ∈ D) the net generated by F , and U ∈ N{f(x)}. It

follows that xn → x, and thus f(xn) → f(x) by assumption. Let (ym : m ∈ E)

be the net generated by f JF K . Then we have limn f(xn) ⊂ limm ym .

[Let r ∈ limn f(xn) and U ∈ N{r}. We may choose (z, F ) = n ∈ D such

that f(xk) ∈ U for k ∈ D, k ≥ n. Let e = (f(z), f [F ]). We clearly have

e ∈ E. Now let (v, V ) = g ∈ E with g ≥ e. We define C = F ∩ f−1 [V ].

There is A ∈ F such that f [A] = V . Since F ∩ A ∈ F and A ⊂ f−1 [V ], we

have C ∈ F . Further we have f [C] = V (exercise). Hence there is c ∈ C
with f(c) = v. Thus we have g = (f(c), f [C]). Since (c, C) ≥ (z, F ), we

have yg = f(c) = f
(
x(c,C)

)
∈ U .]

It follows that f JF K→ f(x), and thus f JB K→ f(x) by Lemma 6.43.

To prove that (vi) implies (v), note that N{x} is a filter base on X with

N{x} → x. Thus we have f JN{x}K→ f(x) by assumption. Let U ∈ N{f(x)}.
It follows that there is V ∈ N{x} such that f [V ] ⊂ U .
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To see that (v) implies (iv), let U ∈ N{f(x)}. By assumption there is V ∈ N{x}
such that f [V ] ⊂ U . It follows that V ⊂ f−1 [U ], and thus f−1 [U ] ∈ N{x}.

�

Definition 6.48

Given two topological spaces (X, TX), (Y, TY ) and a map f : X −→ Y , f is

called TX -TY -continuous, or short continuous, if f is continuous in x for

every x ∈ X. If f is bijective and if both f and f−1 are continuous, then f is

called a TX -TY -homeomorphism, or short homeomorphism. �

Theorem 6.49

Let (X, TX) and (Y, TY ) be two topological spaces, CX and CY the systems of all

closed subsets of X and Y , respectively, SX a subbase for TX , and f : X −→ Y

a map, the following statements are equivalent:

(i) f is continuous.

(ii) f−1 JSY K ⊂ TX

(iii) ∀x ∈ X f−1 JN{f(x)}K ⊂ N{x}

(iv) ∀x ∈ X N{f(x)} ⊂
Φ
f JN{x}K , i.e. f is N{x}-N{f(x)}-continuous

in x for every x ∈ X.

(v) For every x ∈ X and every filter base B on X, B → x implies f JB K→ f(x).

(vi) For every x ∈ X and every net (xn) in X, xn → x implies f(xn)→ f(x).

(vii) f−1 JTY K ⊂ TX

(viii) f−1 J CY K ⊂ CX

Proof. The equivalence of (i) to (vi) follows by Theorem 6.47.

The equivalence of (i) and (vii) is obvious.
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Finally, the equivalence of (vii) and (viii) follows by complementation. �

Further equivalent statements are proven in Theorem 6.88 below.

Remark 6.50

Given two topologies T1 and T2 on a set X, T1 is finer than T2 iff idX is T1 -T2 -

continuous. �

In the case of a first countable domain space, continuity may be characterized

through the convergence of sequences as follows.

Lemma 6.51

Let (X, TX) and (Y, TY ) be two topological spaces where TX is first countable,

x ∈ X, and f : X −→ Y a map. Then the following statements are equivalent:

(i) f is continuous in x.

(ii) For every sequence (xn) in X, xn → x implies f(xn)→ f(x).

Proof. (i) clearly implies (ii).

We prove that (ii) implies (i). By Lemma 5.96 we may choose a neighborhood

base B = {Bn : n ∈ N} of x such that all Bn (n ∈ N) are open and Bn ⊂ Bm for

every m,n ∈ N with m < n. Assume that (ii) is true and that f is not continuous

in x. Then there is U ∈ N{f(x)} such that f−1 [U ] /∈ N{x} by Theorem 6.47.

We may choose a sequence (xn) such that xn ∈ Bn\f−1 [U ] for every n ∈ N. It

follows that xn → x, and thus f(xn) → f(x) by assumption. Therefore there is

m ∈ N such that f(xn) ∈ U for n ∈ N, n ≥ m. Hence xn ∈ f−1 [U ] for n ∈ N
with n ≥ m, which is a contradiction. �
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Definition 6.52

Two topological spaces (X, TX) and (Y, TY ) are called homeomorphic if there

exists a homeomorphism f : X −→ Y . �

Lemma 6.53

Let (X, TX), (Y, TY ) be homeomorphic topological spaces and let f : X −→ Y

be a homeomorphism. Then f JTXK = TY and f−1 JTY K = TX .

Proof. We have f−1 JTY K ⊂ TX by the continuity of f , and f JTXK ⊂ TY by the

continuity of f−1. We define the functions

F : TX −→ TY , F (A) = f [A] ;

G : TY −→ TX , G(B) = f−1 [B]

It follows that

G ◦ F (A) = f−1 [f [A]] = A , F ◦G(B) = f
[
f−1 [B]

]
= B

for every A ∈ TX and B ∈ TY . Therefore F and G are bijective. Thus

f JTXK = F [TX ] = TY , f−1 JTY K = G [TY ] = TX

�

Example 6.54

Let a, b be two sets, and X = {a, b}. Then the systems

Ta =
{

Ø, X, {a}
}
, Tb =

{
Ø, X, {b}

}
are topologies on X. The topological spaces (X, Ta) and (X, Tb) are homeomor-

phic, and the function

f : X −→ X , f(a) = b, f(b) = a

is a Ta -Tb -homeomorphism. If a 6= b, then Ta 6= Tb . �
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Lemma 6.53 says that two homeomorphic topological spaces are essentially the

same, that is they have all properties in common that are related to their topolo-

gies. For example if a topological space is first or second countable, also its

homeomorphic counterpart is first or second countable, respectively. In some

cases a subspace of a topological space whose properties are known and the

topological space to be analysed are homeomorphic. Then the space in ques-

tion automatically has those properties that are inherited by the subspace. The

following Definition is suitable for such cases.

Definition 6.55

Let (X, TX) and (Y, TY ) be two topological spaces and f : X −→ Y a map. Then

f is called embedding of X in Y if the map g : X −→ f [X], g(x) = f(x), is a

homeomorphism. �

We now introduce the third type of continuity, both in a point and globally, viz.

for pseudo-metric spaces.

Definition 6.56

Given two pseudo-metric spaces (X, dX), (Y, dY ), a map f : X −→ Y , and a

point x ∈ X, f is called dX -dY -continuous in x, or short continuous in x, if

∀ε ∈ ]0,∞[ ∃ δ ∈ ]0,∞[ ∀y ∈ X dX(x, y) < δ =⇒ dY
(
f(x), f(y)

)
< ε

If f is continuous in x for every x ∈ X, then f is called dX -dY -continuous, or

short continuous. �

The following Lemma states that the definitions of continuity for pseudo-metric

spaces and for topological spaces are in agreement with the generation of a topol-

ogy by a pseudo-metric.
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Lemma 6.57

Let (X, dX) and (Y, dY ) be pseudo-metric spaces, respectively, f : X −→ Y a

map, and x ∈ X. f is dX -dY -continuous in x iff f is τ(dX)-τ(dY )-continuous

in x. Further, f is dX -dY -continuous iff f is τ(dX)-τ(dY )-continuous.

Proof. To prove the first claim, it is enough to show that f is dX -dY -continuous

in x iff f is N{x}-N{f(x)}-continuous in x by Theorem 6.47.

First assume that f is dX -dY -continuous in x, and let U ∈ N{f(x)}. By Lemma

and Definition 5.119 there is r ∈ ]0,∞[ such that B ⊂ U where B is the open

sphere about f(x) with dY -radius r. It follows that there is s ∈ ]0,∞[ such

that f [A] ⊂ B where A is the open sphere about x with dX -radius s. Since

A ∈ N{x}, this shows that f is N{x}-N{f(x)}-continuous.

Now assume that f is N{x}-N{f(x)}-continuous. Let r ∈ ]0,∞[ and B the

open sphere about f(x) with dY -radius r. Then we have B ∈ N{f(x)}. There is

C ∈ N{x} such that f [C] ⊂ B by assumption. By Lemma and Definition 5.119

there is s ∈ ]0,∞[ such that A ⊂ C where A is the open sphere about x with

dY -radius r. It follows that f is dX -dY -continuous in x.

The second claim follows by the first one. �

Both with respect to filters and with respect to topologies, the composition of

two continuous functions is continuous.

Lemma 6.58

Let (Xi, Ti) (i ∈ {1, 2, 3}) be topological spaces, f : X1 −→ X2 and g : X2 −→ X3

maps, x1 ∈ X1 a point, x2 = f(x1), and x3 = g(x2). For every i ∈ {1, 2, 3} let Fi
be a filter on Xi such that xi is a cluster point of Fi . If f is F1 -F2 -continuous

in x1 and g is F2 -F3 -continuous in x2 , then g ◦ f is F1 -F3 -continuous in x1 .

Proof. Exercise. �
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Lemma 6.59

Let (Xi, Ti) (i ∈ {1, 2, 3}) be topological spaces, f : X1 −→ X2 and g : X2 −→ X3

maps, and x ∈ X1 . If f and g are continuous, then g ◦ f is continuous. If f is

continuous in x, and g is continuous in f(x), then g ◦ f is continuous in x.

Proof. To see the second claim, assume that f is T1 -T2 -continuous in x and g is

T2 -T3 -continuous in f(x). Let A ∈ T3(g(f(x)). It follows that g−1 [A] ∈ T2(f(x))

by the continuity of g, and

(g ◦ f)−1 [A] = f−1
[
g−1 [A]

]
∈ T1

Now the first claim clearly follows. �

We adapt the following convention.

Definition 6.60

Let f ⊂ X× Y be a function. If X = R or Y = R, then continuity of f refers to

the standard topology on R unless otherwise specified. �

Definition 6.61

Given a pseudo-metric space (X, d), the function distd, or short dist, defined by

distd :
(
P(X)\{Ø}

)
×
(
P(X)\{Ø}

)
−→ R

distd(A,B) = inf
{
d(x, y) : x ∈ A, y ∈ B

}
is called distance. If one of the arguments is a singleton, we also write distd(A, x)

and distd(x,B) instead of distd(A, {x}) and distd({x} , B), respectively, where

x ∈ X. �

Notice that the range of the distance is clearly a subset of R+.
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Lemma 6.62

Given a pseudo-metric space (X, d) and a set A ⊂ X where A 6= Ø, the function

f : X −→ R, f(x) = dist(A, x) is continuous.

Proof. Let x ∈ X and U ∈ N{f(x)}. We may choose ε ∈ R such that

]f(x)− ε, f(x) + ε[ ⊂ U

Let u, v ∈ X. Then we have

d(x, v) ≤ d(x, u) + d(u, v), d(u, v) ≤ d(u, x) + d(x, v)

and hence

f(x) ≤ d(x, u) + f(u), f(u) ≤ d(x, u) + f(x)

by Lemmas 4.49 and 2.76. It follows that |f(x) − f(u)| ≤ d(x, u). Thus

f [B(x, ε)] ⊂ U . �

In the case of interval topologies, continuity can by characterized in the following

way.
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Remark 6.63

Let X and Y be two sets, R and S systems of pre-orderings on X and Y ,

respectively, f : X −→ Y a function, and x ∈ X. The following statements are

equivalent by Theorem 6.47 (iii):

(i) f is continuous in x.

(ii) For every S ∈ S and y ∈ Y with (y, f(x)) ∈ S there is a finite index set K

and, for every k ∈ K, a pre-ordering Rk ∈ R, a point xk ∈ X, and an

interval with either Ik = ]−∞, xk[R(k) or Ik = ]xk,∞[R(k) , such that

x ∈
⋂
k∈K Ik and f

[⋂
k∈K Ik

]
⊂ ]y,∞[S .

Moreover, for every S ∈ S and y ∈ Y with (f(x), y) ∈ S there is a finite

index set K and, for every k ∈ K, a pre-ordering Rk ∈ R, a point xk ∈ X,

and an interval with either Ik = ]−∞, xk[R(k) or Ik = ]xk,∞[R(k) , such

that x ∈
⋂
k∈K Ik and f

[⋂
k∈K Ik

]
⊂ ]−∞, y[S .

�

Finally, we introduce the notions of open and closed maps in this Section, which

are, for example, relevant in the proof of Theorem 7.53 where a metric space is

generated from a pseudo-metric space.

Definition 6.64

Let (X, TX) and (Y, TY ) be two topological spaces, CX and CY the systems of

all TX -closed and all TY -closed sets, respectively, and f : X −→ Y a map. If

f JTXK ⊂ TY , then f is called TX -TY -open, or short open. If f JCXK ⊂ CY ,

then f is called TX -TY -closed, or short closed. �
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Lemma 6.65

Let (X, TX), (Y, TY ) be two topological spaces, B a base for TX , and f : X −→ Y

a map. Then the following statements are equivalent:

(i) f is open.

(ii) f JB K ⊂ TY

Proof. Note that (ii) implies (i) by Lemma 2.63 (i). �

Lemma 6.66

With definitions as in Lemma 6.57, if f is an isometry, then f is continuous and

open.

Proof. Assume that f is an isometry. Let x ∈ X, y ∈ Y , and r ∈ ]0,∞[ .

We have f [B(x, r)] = B(f(x), r). Thus f is open by Lemma 6.65. Moreover,

we have f−1 [B(y, r)] =
⋃{

B(z, r) : z ∈ f−1 {y}
}

. Hence f is continuous by

Theorem 6.49 (ii). �

6.5 Closure, interior, derived set, boundary

We now investigate, for a given topological space (X, T ) and an arbitrary subset

A ⊂ X, points whose neighborhood system has particular properties with respect

to the set A. Specifically, we introduce the notions of interior points and their

ensemble, called the interior of the set, accumulation points and their ensemble,

the derived set, boundary points and their ensemble, called the boundary of the

set, and finally the closure of the set.
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Definition 6.67

Let ξ = (X, T ) be a topological space and A ⊂ X. A point x ∈ X is called

interior point of A if A ∈ N{x}. The set of all interior points of A is called

the interior of A and is denoted by intξ(A) or intξA. If the set X is evident

from the context, we also write intT (A) or intT A. If the topological space is

evident from the context, we also write int(A), intA, or A◦. �

The following is a characterization of the interior of a set.

Lemma 6.68

Let (X, T ) be a topological space, A ⊂ X, and A = {U ∈ T : U ⊂ A}. We have

A◦ =
⋃
A = supA ∈ T

where the supremum is with respect to the ordering ⊂ on P(X). A◦ is the largest

open set contained in A, i.e. it is the maximum of A.

Proof. Exercise. �

Definition 6.69

Let ξ = (X, T ) be a topological space and A ⊂ X. A point x ∈ X is called

accumulation point of A if (A ∩ U)\{x} 6= Ø for every U ∈ N{x}. The set

of all accumulation points of A is called the derived set of A and is denoted

by derξ(A) or derξA. If the set X is evident from the context, we also write

derT (A) or derT A. If the topological space is evident from the context, we also

write der(A), derA, or Ad.

The union A ∪ Ad is called the closure of A and is denoted by clξ(A) or clξA.

If the set X is evident from the context, we also write clT (A) or clT A. If the

topological space is evident from the context, we also write cl(A), clA, or A. �
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The following result is a convenient characterization of the closure of a set.

Lemma 6.70

Let (X, T ) be a topological space, C the system of all closed sets, A ⊂ X, and

A = {B ∈ C : A ⊂ B}. We have

A =
⋂
A = inf A ∈ C

where the infimum is with respect to the ordering ⊂ on P(X). A is the smallest

closed set containing A, i.e. it is the minimum of A.

Proof. To show the first equation, assume that x /∈
⋂
A. Then there is B ∈ C

with A ⊂ B and x /∈ B. It follows that A ∩Bc = Ø and x ∈ Bc. Hence x /∈ Ad.
It is also clear that x /∈ A. Therefore we have x /∈ A.

Conversely, assume that x /∈ A. Then there is U ∈ N{x} such that A ∩ U = Ø.

Hence there is V ∈ T such that x ∈ V ⊂ U . We have A∩V = Ø. It follows that

A ⊂ V c, and hence x /∈
⋂
A.

The second equation follows by Example 2.50.

To see the last claim, note that A is a lower bound and also a member of A. �

Those points that belong to the closure of a set may be characterized in terms

of the convergence of nets and filters. The following result is applied frequently

in the sequel.
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Theorem 6.71

Let (X, T ) be a topological space, A ⊂ X, and x ∈ X. The following statements

are equivalent:

(i) x ∈ A

(ii) ∀U ∈ N{x} U ∩A 6= Ø

(iii) There is a net (xn) in A such that xn → x.

(iv) There is a filter F on X such that A ∈ F and F → x.

(v) There is a filter base B on X such that B ⊂ P(A) and B → x.

(vi) x ∈ adh F where F = {F ⊂ X : A ⊂ F}

Proof. The equivalence of (i) and (ii) is a direct consequence of Definition 6.69.

We now show the equivalence of (i), and (iii) to (vi).

To show that (i) implies (iii), let x ∈ A. If x ∈ A, then we may choose a constant

net (xn : n ∈ D) in A with xn = x (n ∈ D). If x ∈ Ad, we may choose for

each U ∈ N{x} a point xU ∈ A ∩ U . Since (N{x} ,⊃) is a directed space,

(xU : U ∈ N{x}) is a net. Moreover, xU → x.

To see that (iii) implies (iv), let (xn) be a net in X with values in A such that

xn → x. Further let F be the filter on X generated by (xn). Then we clearly

have A ∈ F and F → x.

To prove that (iv) implies (v), let F be a filter on X such that A ∈ F and F → x.

Then B = {F ∩A : F ∈ F} is a filter base on X. Moreover, we have B ⊂ P(A)

and B → x.

To show that (v) implies (vi), let B be a filter base on X such that B ⊂ P(A)

and B → x. Further let U ∈ N{x} and F ∈ F . There exists B ∈ B such that

B ⊂ U . It follows that B ⊂ U ∩A ⊂ U ∩ F .

Finally, to see that (vi implies (i), let x ∈ (adh F)\A and U ∈ N{x}. Since
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A ∈ F , we have A ∩ U 6= Ø, and thus (A ∩ U)\{x} 6= Ø. It follows that x ∈ Ad.
�

The following Theorem provides a characterization of the points of the derived

set.

Theorem 6.72

Let (X, T ) be a topological space, A ⊂ X, and x ∈ X. Then the following

statements are equivalent:

(i) x ∈ Ad

(ii) There is a net (xn) in A\{x} such that xn → x.

(iii) There is a filter base B on X such that B ⊂ P(A\{x}) and B → x.

Proof. We first show that (i) implies (ii). Let x ∈ Ad. It follows that x ∈
(A\{x})d. Since

(A\{x})d ⊂ A\{x}

there is a net (xn) in A\{x} such that xn → x by Theorem 6.71.

To see that (ii) implies (iii), let (xn) be a net in X with values in A\{x} such

that xn → x. Further let F be the filter on X generated by (xn). Then

B =
{

(F ∩A)\{x} : F ∈ F
}

is a filter base on X. Moreover, we have B ⊂ P(A\{x}) and B → x.

Finally, to prove that (iii) implies (i), let B be a filter base on X such that

B ⊂ P(A\{x}) and B → x. Further let U ∈ N{x}. There exists B ∈ B such

that B ⊂ U . It follows that (A\{x}) ∩ U 6= Ø. �

In the case of first countability, sequences can be used instead of nets in Theo-

rems 6.71 and 6.72.
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Lemma 6.73

Let (X, T ) be a topological space that is first countable, A ⊂ X, and x ∈ X.

Then the following statements hold:

(i) x ∈ A iff there is a sequence (xn) in A such that xn → x.

(ii) x ∈ Ad iff there is a sequence (xn) in A\{x} such that xn → x.

Proof. Exercise. �

For a pseudo-metric space there is a further characterization of the closure of a

set.

Lemma 6.74

Given a pseudo-metric space (X, d) and a subset A ⊂ X, we have

A = {x ∈ X : dist(A, x) = 0} where the closure is with respect to the pseudo-

metric topology.

Proof. Exercise. �

Definition 6.75

Let ξ = (X, T ) be a topological space and A ⊂ X. A point x ∈ X is called

boundary point of A if A ∩ U 6= Ø and (X \A) ∩ U 6= Ø for every U ∈ N{x}.
The set of all boundary points of A is called the boundary of A and is denoted

by boundξ(A) or boundξA. If the set X is evident from the context, we also write

boundT (A) or boundT A. If the topological space is evident from the context,

we also write bound(A) or boundA, or ∂A. �

We have the following characterizations of the boundary.
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Lemma 6.76

Let (X, T ) be a topological space and A ⊂ X. The following statements hold:

(i) x ∈ ∂A iff there is a net (xn) in A such that xn → x and a net (ym) in Ac

such that ym → x.

(ii) ∂A = A ∩Ac

Proof. Exercise. �

The next Lemma contains various results involving the interior, closure, derived

set, and boundary of a set.
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Lemma 6.77

Let (X, T ) be a topological space, C the system of all closed sets, and A ⊂ X.

The following statements hold:

(i) A◦ ⊂ A

(ii) ∂A ∈ C

(iii) A◦ ∩ ∂A = Ø

(iv) A = A◦ ∪ ∂A

(v) A ∈ C ⇐⇒ A = A ⇐⇒ Ad ⊂ A ⇐⇒ ∂A ⊂ A

(vi) A ∈ T ⇐⇒ A◦ = A

(vii) Ac = (A◦)c

(viii) (A◦)◦ = A◦

(ix) A = A

(x) ∂(∂A) ⊂ ∂A

Proof. (i) follows by Definition 6.67.

(ii) follows by Lemma 6.76 (ii).

(iii) is obvious.

In order to see (iv), note that clearly A◦ ⊂ A. Moreover, we have ∂A ⊂ A by

Lemma 6.76 (ii). Conversely, we have A ⊂ A◦ ∪ ∂A. Moreover, let x ∈ Ad \A if

such a point exists. Then for every U ∈ N{x} we have U ∩A 6= Ø by definition

and U ∩Ac 6= Ø since x ∈ Ac. Hence x ∈ ∂A.

The first equivalence of (v) follows by Lemma 6.70, the second by definition, and

the third by (iv).

(vi) is obvious.
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To show (vii), notice that

(A◦)c =
(⋃{

U ∈ T : U ⊂ A
})c

=
⋂{

U c : U ∈ T , U ⊂ A
}

=
⋂{

C ∈ C : Ac ⊂ C
}

= Ac

(viii) is a consequence of Lemma (6.68) and (vi).

(ix) follows by Lemma (6.70) and (v).

(x) follows by (ii) and (v). �

The interplay of intersection and union with interior, closure, and derived set is

now investigated.

Lemma 6.78

Let (X, T ) be a topological space, A,B ⊂ X, and Ai ⊂ X (i ∈ I) where I is an

index set. The following statements hold:

(i) (A ∩B)◦ = A◦ ∩B◦

(ii)
(⋂

i∈I Ai
)◦ ⊂ ⋂

i∈I A
◦
i

(iii)
⋂
i∈I Ai ⊂

⋂
i∈I Ai

(iv)
(⋂

i∈I Ai
)d ⊂ ⋂

i∈I A
d
i

(v)
⋃
i∈I A

◦
i ⊂

(⋃
i∈I Ai

)◦
(vi) A ∪B = A ∪B

(vii)
⋃
i∈I Ai ⊂

⋃
i∈I Ai

(viii) (A ∪B)d = Ad ∪Bd

(ix)
⋃
i∈I A

d
i ⊂

(⋃
i∈I Ai

)d
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Proof. (i), (ii), (v), and (ix) hold by definition.

To see (iii) and (iv), we define B =
⋂
A. For every A ∈ A we have B ⊂ A and

therefore B ⊂ A by Theorem 6.71, and Bd ⊂ Ad by Theorem 6.72.

In order to see (vi), note that

A ∪B = (Ac ∩Bc)c =
(
(Ac ∩Bc)◦

)c
=
(
(Ac)

◦ ∩ (Bc)
◦)c

=
(
(Ac)

◦)c ∪ ((Bc)◦)c = A ∪B

by (i) and Lemma 6.77 (vii).

(vii) follows by Theorem 6.71.

To show (viii) notice that (A ∪ B)d ⊃ Ad ∪ Bd clearly holds. Conversely, let

x ∈ (A ∪ B)d. Assume there are U, V ∈ N open{x} such that (U ∩ A)\{x} = Ø

and (V ∩B)\{x} = Ø. Thus we have
(
(U ∩ V )∩ (A∪B)

)
\ {x} = Ø, which is a

contradiction. �

The following Remarks and Examples demonstrate that stricter statements than

those in Lemma 6.78 are generally not possible to achieve.

Example 6.79

In order to show that equality does generally not hold in Lemma 6.78 (ii),

consider the standard ordering < on R and the system of proper intervals

A =
{

]−n−1, n−1[ : n ∈ N, n > 0
}

. �

Example 6.80

Generally equality does not hold in (iii) and (iv) even if I is finite. To see this

consider the standard ordering < on R and the system A = { ]−∞, 0[ , ]0,∞[ }.
�

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
notions



104 Chapter 6. Convergence and continuity

Example 6.81

Generally equality does not hold in (v) even if I is finite. To see this consider

the standard ordering < on R and the system A = { [0, 1] , [1, 2] }. �

Example 6.82

To see that equality does generally not hold in (vii) and (ix) consider the standard

ordering < on R and the system A =
{[

0, 1− n−1
]

: n ∈ N, n > 0
}

. �

A condition under which the reverse of Lemma 6.78 (vii) is true is provided in

Lemma 7.25 below.

It is possible to characterize a topology on a given set X by expressing what it

means to form the closure A of A for every A ⊂ X. This characterization is

provided in Theorem 6.84 below. We begin with listing the relevant properties

of the function that maps a set A on its closure with respect to a given topology.

Definition 6.83

Given a set X, a function f : P(X) −→ P(X) is called closure operator on X

if it has the following properties:

(i) f(Ø) = Ø

(ii) A ⊂ f(A)

(iii) f(A ∪B) = f(A) ∪ f(B)

(iv) f(f(A)) = f(A)

�

The properties (i) to (iv) in Definition 6.83 are called Kuratowski axioms in the

literature, cf. [Gaal].
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Theorem 6.84

Let X be a set, f a closure operator on X, and C = {A ⊂ X : f(A) = A}. The

system T = {Ac : A ∈ C} is the unique topology on X such that clT A = f(A)

for every A ⊂ X. Moreover, we have ran f = C.

Proof. C has properties (i) to (iii) in Lemma 5.12.

[We have Ø ∈ C because of property (i) in Definition 6.83, and X ∈ C
because of property (ii). Further, property (iii) implies that A ∪ B ∈ C for

every A,B ∈ C. Finally let A ⊂ C where A 6= Ø. We clearly have
⋂
A ⊂

f
(⋂
A
)

by property (ii). Moreover, for every A ∈ A we have
⋂
A ⊂ A, and

therefore f
(⋂
A
)
⊂ f(A) = A, and thus f

(⋂
A
)
⊂
⋂
A. Hence we obtain

f
(⋂
A
)

=
⋂
A, and therefore

⋂
A ∈ C.]

Therefore T is a topology on X by Lemma 5.13, and C is the system of all

T -closed sets.

Now let A ⊂ X. We have f(A) ∈ C by Definition 6.83 (iv). It follows that

clT A =
⋂{

B ∈ C : A ⊂ B
}
⊂ f(A)

by Lemma 6.70 and Definition 6.83 (ii). Conversely, for every B ∈ C, A ⊂ B

implies f(A) ⊂ f(B) = B. Hence we have f(A) ⊂ clT A. Thus we obtain

clT A = f(A).

To see the uniqueness, note that for a topology on X with the stated property,

the system of all closed sets is precisely C by Lemma 6.77 (v).

The last claim clearly holds. �

Similarly to the closure operator we introduce the notion of interior operator.
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Definition 6.85

Given a set X, a function f : P(X) −→ P(X) is called interior operator on X

if it has the following properties:

(i) f(X) = X

(ii) f(A) ⊂ A

(iii) f(A ∩B) = f(A) ∩ f(B)

(iv) f(f(A)) = f(A)

�

There is a duality between closure and interior operators as follows.

Lemma 6.86

Let X be a set, f : P(X) −→ P(X) a map, and g : P(X) −→ P(X) the

map defined by g(A) =
(
f(Ac)

)c
. We have f(A) =

(
g(Ac)

)c
for every A ⊂ X.

Moreover, f is a closure operator on X iff g is an interior operator on X.

Proof. Exercise. �

It follows that a given interior operator on X defines a certain topology on X.

Theorem 6.87

Let X be a set, f : P(X) −→ P(X) an interior operator on X, and T =

{U ⊂ X : f(U) = U}. The system T is the unique topology on X such that

f(A) = intT A for every A ⊂ X. Moreover, we have ran f = T .

Proof. Let g be the closure operator on X defined by g(A) =
(
f(Ac)

)c
for ev-

ery A ⊂ X (cf. Lemma 6.86), and Tg = {Ac : A ⊂ X, g(A) = A}. Then Tg
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is the unique topology on X such that clT (g)A = g(A) for every A ⊂ X by

Theorem 6.84. We have

Tg =
{
U ⊂ X : g(U c) = U c

}
= T

which shows that T is a topology on X.

Moreover, for every A ⊂ X we have

f(A) =
(
g(Ac)

)c
=
(
clT (Ac)

)c
= intT A

by Lemma 6.77 (vii). Since the range of g is the system of all closed sets, the

range of f is T .

To see the uniqueness, notice that a topology on X with the stated property is

equal to T by Lemma 6.77 (vi). �

Using closure and interior we obtain further characterizations of continuity of a

function.

Theorem 6.88

Given two topological spaces (X, TX), (Y, TY ), and a map f : X −→ Y , the

following statements are equivalent:

(i) f is continuous.

(ii) ∀A ⊂ X f
[
A
]
⊂ f [A]

(iii) ∀B ⊂ Y f−1 [B] ⊂ f−1
[
B
]

(iv) ∀B ⊂ Y f−1 [B◦] ⊂
(
f−1 [B]

)◦
Proof. The fact that (i) implies (ii) follows by Theorems 6.47 and 6.71.

To prove that (ii) implies (iii), let B ⊂ Y and A = f−1 [B]. Then we have

f [A] ⊂ B, and thus f
[
A
]
⊂ f [A] ⊂ B. It follows that

f−1 [B] = A ⊂ f−1
[
f
[
A
]]
⊂ f−1

[
B
]
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To see that (iii) implies (iv), let B ⊂ Y . We have

f−1 [B◦] = f−1
[(
Bc
)c]

=
(
f−1

[
Bc
])c ⊂ (f−1 [Bc]

)c
=
(

(f−1 [B])
c
)c

=
(
f−1 [B]

)◦
To see that (iv) implies (i), let x ∈ X and U ∈ N{f(x)}. Then we have

f(x) ∈ U◦. It follows that

x ∈ f−1 [U◦] ⊂
(
f−1 [U ]

)◦ ⊂ f−1 [U ]

and thus f−1 [U ] ∈ N{x}. �

In Section 6.1 we have investigated the convergence of sequences with respect to

comparable topologies on the same set, see Lemmas 6.14 and 6.90. In particular,

we have found that if a topology T1 is finer than a topology T2, then T1 is also

sequentially stronger than T2. As shown now the converse implication holds if

the topologies are countable. We also establish similar results for the convergence

properties of filters and nets. In the proofs we follow [Wilansky].

Proposition 6.89

Let X be a set and T1, T2 two topologies on X. T1 is finer than T2 iff

clT (1)A ⊂ clT (2)A.

Proof. For i ∈ {1, 2} let Ci be the system of all Ti-closed sets.

First assume that T2 ⊂ T1. It follows that C2 ⊂ C1 and therefore

clT (1)A =
⋂{

B ∈ C1 : A ⊂ B
}

⊂
⋂{

B ∈ C2 : A ⊂ B
}

= clT (2)A

by Lemma 6.70.
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Now assume that clT (1)A ⊂ clT (2)A for every A ⊂ X. Let A ∈ T2. Then we have

Ac ∈ C2. Moreover, by assumption we have clT (1)A
c ⊂ clT (2)A

c = Ac. It follows

that clT (1)A
c = Ac. Thus we have Ac ∈ C1, and hence A ∈ T1. �

Lemma 6.90

Let X be a set, T1 and T2 two topologies on X where T1 is first countable. T1 is

finer than T2 iff T1 is sequentially stronger than T2.

Proof. First assume that T1 is sequentially stronger than T2. Then we have

clT (1)A ⊂ clT (2)A by Lemma 6.73 (ii). It follows that T1 is finer than T2 by

Proposition 6.89.

The converse follows by Lemma 6.14. �

Theorem 6.91

LetX be a set, and T1 and T2 two topologies onX. Then the following statements

are equivalent:

(i) T1 is finer than T2.

(ii) For every net (xn) in X and every x ∈ X, xn → x with respect to T1

implies xn → x with respect to T2.

(iii) For every filter F in X and every x ∈ X, F → x with respect to T1 implies

F → x with respect to T2.

Proof. (i) implies (ii) by Lemma 5.97.

To see that (ii) implies (i), assume that (ii) holds. Let A ⊂ X. We have

clT (1)A ⊂ clT (2)A.

[Let x ∈ clT (1)A. We may choose a net (xn) in A such that xn → x with

respect to T1 by Theorem 6.71. Then we have xn → x with respect to T2 by

assumption. It follows that x ∈ clT (2)A.]
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Now (i) follows by Proposition 6.89.

The equivalence of (ii) and (iii) follows by Lemma 6.39 and by Lemma and

Definition 6.40. �

6.6 Separability

In this Section we provide a brief discussion of separability.

Definition 6.92

Given a topological space (X, T ) and A ⊂ X, A is called dense in X if A = X.

�

Order dense sets as introduced in Definition 2.29 in the context of ordered spaces

are related to dense sets as follows.

Lemma 6.93

Let (X,≺) be a pre-ordered space where ≺ has full field and the interval inter-

section property. Further let A ⊂ X be an order dense subset. Then A is dense

in X with respect to the interval topology.

Proof. We define

S =
{

]−∞, x[ , ]x,∞[ : x ∈ X
}
,

A =
{

]x, y[ : x, y ∈ X, x ≺ y
}
,

B = S ∪ A ∪ {Ø}

The system B is a base for the interval topology by Lemma 5.99. Let x ∈ X

and U ∈ N{x}. Then there is B ∈ B such that x ∈ B ⊂ U . Moreover we have

B ∩A 6= Ø since A is order dense. Thus x ∈ A by Theorem 6.71. �
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Definition 6.94

A topological space is called separable if it contains a countable subset that is

dense in X. �

Example 6.95

Let < be the ordering on R+ as defined in Lemma and Definition 4.13. It has

full field and the interval intersection property, cf. Remark 5.103. Moreover D+

is order dense in R+ by Lemma 4.15. Thus D+ is dense in R+ with respect to

the standard topology by Lemma 6.93. Since D+ is countable by Corollary 4.3,

(R+, <) is separable. Similarly it can be shown that (R, <) is separable where <

is the standard ordering. �

We now briefly examine how the properties of first and second countability of a

topological space are related to separability.

Lemma 6.96

A topological space (X, T ) that is second countable is separable.

Proof. Let B be a countable base for T . For each B ∈ B with B 6= Ø we

may choose a point xB ∈ B. We define A = {xB : B ∈ B}. Let x ∈ X and

U ∈ N{x}. Then U ∩A 6= Ø. It follows that x ∈ A by Theorem 6.71. �

Notice that a separable space need not even be first countable as shown in the

following Example that we take from [Steen].

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
notions



112 Chapter 6. Convergence and continuity

Example 6.97

Let X be an infinite set that is not countable and Tcf the cofinite topology, cf.

Lemma and Definition 5.10 (iii).

Let A ⊂ X be countable and infinite. Then U ∩A 6= Ø for every U ∈ N{x} and

every x ∈ X. Hence (X, Tcf) is separable by Theorem 6.71.

Now assume that (X, Tcf) is first countable. Then there is a point x ∈ X and a

countable neighborhood base B of x. We define D =
⋂
B. We have D = {x} by

the definition of Tcf , and therefore X\{x} =
⋃
{Bc : B ∈ B}. Since Bc is finite

for every B ∈ B, it follows that X\{x} is countable by Lemma 3.70, which is a

contradiction. �

Finally the following results holds for pseudo-metrizable spaces.

Theorem 6.98

A pseudo-metrizable topological space is separable iff it is second countable.

Proof. Let ξ = (X, T ) be a pseudo-metrizable topological space and d a pseudo-

metric on X that generates T . Assume that ξ is separable. Let A be a countable

set that is dense in X and R = D+\{0}. Then the system

B =
{
B(x, r) : x ∈ A, r ∈ R

}
is a countable base for T by Lemma 3.69.
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[Let U ∈ T and x ∈ U . We may choose y ∈ X and r ∈ R such that

x ∈ B(y, r) ⊂ U by the definition of the pseudo-metric topology. We define

ε = r − d(x, y). T is first countable by Theorem 5.127. Hence there is a

sequence (xn) in A such that xn → x by Lemma 6.73 (i). We may choose m ∈
N such that d(xm, x) < ε/2. It follows that x ∈ B where B = B(xm, ε/2).

For every z ∈ B we have

d(y, z) ≤ d(y, x) + d(x, xm) + d(xm, z) < d(x, y) + ε = r

and hence B ⊂ B(y, r).]

The converse is true by Lemma 6.96. �
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In this Chapter we explore how a topology on a given set can be defined by

means of already specified topologies on—generally different—sets and functions

between the old and the new sets. Obviously there are two possibilities: the new

topology may be generated on the domain of the functions by given topologies on

their ranges (so-called inverse image topology, see Section 7.1) or generated on

their range by given topologies on their domains (so-called direct image topology,

see Section 7.4). In Sections 7.2 and 7.3 we analyse two particular cases of

inverse image topologies in detail: subspace topologies and product topologies.

Section 7.5 is devoted to quotient topologies which are special cases of direct

image topologies.

7.1 Inverse image topology

Lemma and Definition 7.1

Given a set X, topological spaces (Yi, Ti) (i ∈ I), where I is an index set, and

functions fi : X −→ Yi (i ∈ I), the system S =
⋃
i∈I f

−1
i JTi K is a topological

subbase on X. The topology on X that is generated by S is called inverse image

topology or the topology generated by F = {(fi, Ti) : i ∈ I} and denoted

by τ(F ). It is the coarsest topology T on X such that fi is T -Ti -continuous for

every i ∈ I. We also use the notation xi = fi(x) for x ∈ X and i ∈ I.

Proof. S is a topological subbase on X by Lemma 5.38. We denote by A the

set of all topologies T on X such that fi is T -Ti -continuous for every i ∈ I.

Then we have τ(F ) ∈ A by Theorem 6.49. Moreover, for every T ∈ A we have

S ⊂ T . Hence τ(F ) is the coarsest member of A by Lemma 5.38. �
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Lemma 7.2

With definitions as in Lemma and Definition 7.1, let Si be a subbase for Ti for

every i ∈ I. The system R =
⋃
i∈I f

−1
i JSiK is a subbase for τ(F ).

Proof. First note that R is a topological subbase on X by Lemma 5.38. We

denote by T the topology generated by R. Now, R ⊂ S implies T = ΘΨ(R) ⊂
ΘΨ(S) = τ(F ). Moreover, for every i ∈ I, fi is T -Ti -continuous by Theo-

rem 6.49. Since τ(F ) is the coarsest such topology, we have τ(F ) ⊂ T . �

Corollary 7.3

With definitions as in Lemma and Definition 7.1, let C be the system of all τ(F )-

closed sets and, for each i ∈ I, let Ei be a subbase for the Ti - closed sets. Then⋃
i∈I f

−1
i JEiK is a subbase for C.

Proof. This is a consequence of Lemma 7.2 by complementation. �

The following is an important special case of Lemma and Definition 7.1 and

Lemma 7.2.

Corollary 7.4

Let X be a set and I an index set. For each i ∈ I, let Ti be a topology on X and

Si a subbase for Ti. Further let F = {(idX , Ti) : i ∈ I}.
⋃
i∈I Si is a subbase

for τ(F ). τ(F ) is the supremum of {Ti : i ∈ I} in the ordered space (T (X),⊂),

i.e. it is the coarsest topology on X that is finer than Ti for every i ∈ I.

Proof. Exercise. �

Another relevant special case is that of a topology generated by a single map.

We have the following result.
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Corollary 7.5

Let X be a set, (Y, T ) a topological space, B a base for T , S a subbase for T ,

C the system of all T -closed sets, D a base for C, E a subbase for C, f : X −→ Y

a map, and TX = τ
(
{(f, T )}

)
. Then the following statements hold:

(i) TX = f−1 JT K

(ii) f−1 JB K is a base for TX .

(iii) f−1 JS K is a subbase for TX .

(iv) f−1 JC K is the system of all TX -closed sets.

(v) f−1 JD K is a base for f−1 JC K .

(vi) f−1 JE K is a subbase for f−1 JC K .

Proof. Exercise. �

Example 7.6

Let m,n ∈ N with 0 < m < n, Tm and Tn the standard topologies on Rm and Rn,

respectively, and x ∈ Rn−m. Further we define the function

f : Rm −→ Rn , f(z) = (z, x)

where we have identified Rn and Rm×Rn−m. Then we have τ({(f, Tn)}) = Tm .

�

The following Lemma shows how the generation of topologies behaves under the

composition of functions.
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Lemma 7.7

Let X and Yi (i ∈ I) be sets where I is an index set, (Zj , Tj) (j ∈ Ji, i ∈ I)

topological spaces where Ji (i ∈ I) are distinct index sets, and fi : X −→ Yi

(i ∈ I) and gj : Yi −→ Zj (i ∈ I, j ∈ Ji) maps. For every i ∈ I, we define the

following topology on Yi :

Ti = τ
(
{(gj , Tj) : j ∈ Ji}

)
We have

τ
(
{(fi, Ti) : i ∈ I}

)
= τ

(
{(gj ◦ fi, Tj) : i ∈ I, j ∈ Ji}

)
Proof. This is a consequence of Lemma 7.2. �

Theorem 7.8

Let (X, T ) be a topological space, (Yi, Ti) (i ∈ I) topological spaces where I is

an index set, fi : X −→ Yi (i ∈ I) functions, and F = {(fi, Ti) : i ∈ I}. The

following statements are equivalent:

(i) T = τ(F )

(ii) For every topological space (Z, TZ) and every function g : Z −→ X, g is

TZ -T -continuous iff fi ◦ g is TZ -Ti -continuous for every i ∈ I.

Proof. To see that (i) implies (ii), assume that τ(F ) = T . Then fi is T -Ti -

continuous for every i ∈ I. Further let (Z, TZ) be a topological space and

g : Z −→ X a map. Then the continuity of g implies the continuity of fi ◦ g
for every i ∈ I by Lemma 6.59. Conversely, for every i ∈ I let Si be a subbase

for Ti . Then we have g−1
[
f−1
i [S]

]
∈ TZ for every i ∈ I and S ∈ Si by the conti-

nuity of fi ◦ g. Since
{
f−1
i [S] : i ∈ I, S ∈ Si

}
is a subbase of T , the continuity

of g follows.
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To show that (ii) implies (i), it is enough to show that the topology T is uniquely

specified by property (ii). Assume that T1 and T2 are two topologies on X such

that (ii) is satisfied in both cases. Now let Z = X and g = idX . Since g is

Tm -Tm -continuous for m ∈ {1, 2}, it follows that fi is Tm -Ti -continuous for

m ∈ {1, 2} and i ∈ I. Thus g is T1 -T2 -continuous and T2 -T1 -continuous, and

hence T1 = T2 . �

Property (ii) in Theorem 7.8 is often called a universal property. Below we

encounter other universal properties a topological or a uniform space may have.

Theorem 7.9

With definitions as in Lemma and Definition 7.1, let (xn : n ∈ D) be a net in X,

F a filter on X, and x ∈ X. The following statements hold:

(i) xn → x ⇐⇒ ∀i ∈ I fi(xn)→ fi(x)

(ii) F → x ⇐⇒ ∀i ∈ I fi JF K→ fi(x)

Proof. To see (i), assume that fi(xn)→ fi(x) for every i ∈ I and let U ∈ N{x}.
Then there is G @ S such that G 6= Ø and x ∈

⋂
G ⊂ U . Now let G ∈ G.

Further let i ∈ I and V ∈ Ti such that G = f−1
i [V ]. Thus there is NG ∈ D

such that fi(xn) ∈ V for every n ≥ NG by assumption. We may choose such

NG for each G ∈ G. It follows that xn ∈ U for n ≥ N where N is the maximum

of {NG : G ∈ G}. The converse follows by Theorem 6.49.

To see (ii), assume that fi JF K → fi(x) for every i ∈ I. Let (ym) be the net

generated by F , U ∈ N{x}, and i ∈ I. There is F ∈ F such that fi [F ] ⊂ U

by assumption. Now let M = (y, F ) with y ∈ F . It follows that fi(ym) ∈ U

for every m ≥ M . Hence we have ym → x by (i), and thus F → x. Again the

reverse implication follows by Theorem 6.49. �
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7.2 Topological subspace

In this Section a special case of inverse image topologies is analyzed, viz. topo-

logical subspaces.

Lemma and Definition 7.10

Given a topological space ξ = (X, T ) and a subset A ⊂ X, the system

{U ∩A : U ∈ T } is a topology on A. It is called the relative topology on A

and denoted by T |A. The pair (A, T |A) is called topological subspace of ξ,

or short subspace of ξ, and denoted by ξ |A. A member of T |A is also called

open in A whereas a member of T is also called open in X. Furthermore a

(T |A)-closed set is also called closed in A, and a T -closed set is also called

closed in X.

Proof. Exercise. �

Definition 7.11

Given a set X and a subset A ⊂ X, the map j : A −→ X, j(x) = x (x ∈ A), is

called inclusion. We also write j : A ↪→ X. �
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Lemma 7.12

Let ξ = (X, T ) be a topological space, α = (A, TA) a subspace of ξ, and C and

CA their respective systems of closed sets. Further let B be a base for T , S a

subbase for T , D a base for the closed sets in X, E a subbase for the closed

sets in X, j : A ↪→ X the inclusion, x ∈ A, and B ⊂ A. Then the following

statements hold:

(i) We have TA = j−1 JT K . TA is generated by {(j, T )}, and j is TA-T -

continuous.

(ii) The system j−1 JB K is a base for TA.

(iii) The system j−1 JS K is a subbase for TA.

(iv) Let (Y, TY ) be a topological space and g : Y −→ A a map. Then g is

continuous iff j ◦ g is continuous.

(v) {A ∩ C : C ∈ C} = j−1 JC K = CA

(vi) The system j−1 JD K is a base for CA.

(vii) The system j−1 JE K is a subbase for CA.

(viii)
{
A ∩ U : U ∈ Nξ{x}

}
= j−1 JNξ{x}K = Nα{x}

(ix) clαB = clξ(B) ∩A

(x) intξB ⊂ intαB

(xi) boundαB ⊂ boundξB

Proof. (i) is obvious.

(ii), (iii), and (v) to (vii are consequences of (i) and Corollary 7.5.

(iv) follows by (i) and Theorem 7.8.
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The first equation in (viii) follows by definition of j. Moreover we have

j−1 JNξ{x}K ⊂ Nα{x}

by the continuity of j. Conversely, let U ∈ Nα{x}. We may choose V ∈ TA with

x ∈ V ⊂ U , and W ∈ T with V = W ∩ A. Let R = W ∪ U . Then R ∈ Nξ{x},
and j−1 [R] = U .

(ix) follows by (v) and Lemma 6.70 as follows:

clαB =
⋂{

C ∈ CA : B ⊂ C
}

=
⋂{

D ∩A : B ⊂ D, D ∈ C
}

=
⋂{

D ∈ C : B ⊂ D
}
∩A = clξ(B) ∩A

To see (x), notice that a set U ⊂ A that is open in X is also open in A. Therefore

we have:

intξB =
⋃{

U ∈ T : U ⊂ B
}

⊂
⋃{

U ∈ TA : U ⊂ B
}

= intαB

Finally, in order to prove (xi), let x ∈ boundαB, U ∈ N open
ξ {x}, and V = U ∩A.

It follows that V ∈ Nα{x}, and thus V ∩B 6= Ø and V ∩ (A\B) 6= Ø. Therefore

we have U ∩B 6= Ø and U ∩ (X\B) 6= Ø. It follows that x ∈ boundξB. �

Remark 7.13

Let ξ = (X, T ) be a topological space and B ⊂ A ⊂ X. If B is open in X, then

B is open in A by definition of the relative topology. If B is closed in X, then B

is closed in A by Lemma 7.12 (v). The converse of both implications is generally

not true. However, it is true under additional assumptions, cf. Lemmas 7.19

and 7.20. �
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Remark 7.14

Let ξ = (X, T ) be a topological space and B ⊂ A ⊂ X. We have ξ |B =

(ξ |A) |B, which is a consequence of Definition 7.10. It also follows by Lem-

mas 7.7 and 7.12 (i). �

Lemma 7.15

Let T and T+ be the standard topologies on R and R+ , respectively. We have

T+ = T |R+ . Further let A ⊂ R+ . Then T+|A = T |A.

Proof. To see the first claim note that

S =
{

]−∞, x[ , ]x,∞[ : x ∈ R
}

is a subbase for T and

S+ =
{

]−∞, x[ , ]x,∞[ : x ∈ R+

}
∪ {R+}

is a subbase for T+ . These two systems are related by j−1 JSK = S+ where

j : R+ ↪→ R is the inclusion. The claim follows by Theorem 7.12 (iii).

Now the second claim follows by Remark 7.14. �

The following three Lemmas show that the concept of topological subspace does

not lead to any complications when considering convergent nets or filters and

continuous functions.

Lemma 7.16

Let ξ = (X, T ) be a topological space, (A,A) a subspace of ξ, (xn) a net in A,

and x ∈ A. Then xn → x with respect to A iff xn → x with respect to T .

Proof. This is a special case of Theorem 7.9 (i). �
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Lemma 7.17

Let ξ = (X, T ) be a topological space, (A,A) a subspace of ξ, x ∈ A, and G
a filter on A. Then G is a filter base for a filter on X, say F . Moreover the

following statements are equivalent:

(i) G → x with respect to A

(ii) G → x with respect to T , i.e. G is considered as filter base on X

(iii) F → x with respect to T

Proof. The equivalence of (i) and (ii) is a special case of Theorem 7.9 (ii). The

equivalence of (ii) and (iii) follows by definition. �

Lemma 7.18

Let (X, TX) and (Y, TY ) be topological spaces, (A, TA) a subspace of (X, TX),

(B, TB) a subspace of (Y, TY ), and f : X −→ Y a map with f [X] ⊂ B. Further

we define the map g : X −→ B, g(x) = f(x). The following statements hold:

(i) If f is continuous, then f |A is continuous.

(ii) f is continuous iff g is continuous.

Proof. Exercise. �

The following two Lemmas state under which conditions the reverse implications

of Remark 7.13 are true.
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Lemma 7.19

Let ξ = (X, T ) be a topological space, A a closed subset of X, α = ξ |A, and

B ⊂ A. The following statements hold:

(i) B is closed in X iff it is closed in A.

(ii) clαB = clξB

Proof. (i) follows by Lemma 7.12 (v) and Remark 7.13.

To see (ii), notice that clξB ⊂ clξA = A. Thus we have clαB = clξB by

Lemma 7.12 (ix). �

Lemma 7.20

Let ξ = (X, T ) be a topological space, A ∈ T , α = ξ |A, and B ⊂ A. The

following statements hold:

(i) B is open in X iff it is open in A.

(ii) intαB = intξB

(iii) boundαB = boundξ(B) ∩A

Proof. (i) is obvious.

To show (ii), let x ∈ intαB and U open in A with x ∈ U ⊂ B. Then U is open

in X by (i), and thus x ∈ intξB. The converse follows by Lemma 7.12 (x).

To show (iii), notice that boundαB ⊂ boundξ(B) ∩ A by Lemma 7.12 (xi).

Conversely, let x ∈ boundξ(B) ∩ A and U ∈ N open
α {x}. It follows by (i) that

U ∈ N open
ξ {x}, and hence U ∩B 6= Ø and

Ø 6= U ∩ (X\B) = U ∩ (A\B)

Thus x ∈ boundαB. �
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Lemma and Definition 7.21

Given a pseudo-metric space ξ = (X, d) and a subset A ⊂ X, the restriction

d |(A × A) is a pseudo-metric on A. It is called the relative pseudo-metric

and denoted by d |A. The pseudo-metric space (A, d |A) is called pseudo-metric

subspace of ξ, or short subspace of ξ, and denoted by ξ |A.

Proof. This follows by Definition 5.114. �

Lemma 7.22

Given a metric space ξ = (X, d) and a subset A ⊂ X, the subspace ξ |A is a

metric space.

Proof. This follows by Definition 5.114. �

The following Lemma states that the generation of a topology from a pseudo-

metric commutes with the formation of a subspace.

Lemma 7.23

Given a pseudo-metric space ξ = (X, d) and a subset A ⊂ X, we have τ(d) |A =

τ(d |A).

Proof. We define for every r ∈ ]0,∞[ and x ∈ X:

B(x, r) =
{
y ∈ X : d(x, y) < r

}
Moreover, let

B =
{
B(x, r) ∩A : r ∈ ]0,∞[ , x ∈ X

}
Then B is a base for for τ(d) |A by Lemma 7.12 (ii). Further let dA = d |A and

BA =
{
B(x, r) ∩A : r ∈ ]0,∞[ , x ∈ A

}
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Then BA is a base for τ(dA). We have BA ⊂ B, and thus τ(dA) ⊂ τ(d) |A.

Conversely, let r ∈ ]0,∞[ , x ∈ X, and y ∈ B(x, r) ∩ A. Since B(x, r) is τ(d)-

open, there is s ∈ ]0,∞[ such that B(y, s) ⊂ B(x, r). Since B(y, s) ∩ A ∈ BA,

it follows that B ⊂
Φ
BA, and thus τ(d) |A ⊂ τ(dA). �

Definition 7.24

Let (X, T ) be a topological space and A ⊂ P(X). A is called locally finite

if for every x ∈ X there is a neighborhood U ∈ N{x} and B @ A such that

U ∩ A = Ø for every A ∈ A\B. A is called locally discrete if for every x ∈ X
there is a neighborhood U ∈ N{x} and B @ A such that U ∩ A = Ø for every

A ∈ A\B and either B ∼ 0 or B ∼ 1. �

Lemma 7.25

Let (X, T ) be a topological space, I an index set, and Ai ⊂ X (i ∈ I). If

{Ai : i ∈ I} is locally finite, then we have
⋃
i∈I Ai =

⋃
i∈I Ai .

Proof. Assume the stated condition. Let x ∈
⋃
i∈I Ai. There exist U ∈ N{x}

and J @ I such that U ∩Ai = Ø for every i ∈ I\J . Hence V ∩
⋃
i∈J Ai 6= Ø for

every V ∈ N{x} by Theorem 6.71 (ii). It follows that

x ∈
⋃
i∈J

Ai =
⋃
i∈J

Ai ⊂
⋃
i∈I

Ai

by Lemma 6.78 (vi). The converse follows by Lemma 6.78 (vii). �

Theorem 7.26

Let (X, T ) and (Y, TY ) be topological spaces, I an index set, closed sets Ai ⊂ X
(i ∈ I) such that {Ai : i ∈ I} is locally finite and

⋃
i∈I Ai = X, and f : X −→ Y

a function. f is continuous iff f |Ai is continuous for every i ∈ I.

Proof. If f is continuous, then f |Ai is continuous for every i ∈ I by Lemma 7.18.
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Conversely, assume that f |Ai is continuous for every i ∈ I. For every i ∈ I we

define Ti = T |Ai .

Let B ⊂ X. Note that

clT B = clT
(⋃

i∈I(B ∩Ai)
)

=
⋃
i∈I

clT (B ∩Ai)

by Lemma 7.25. Moreover, for every i ∈ I, we have clT (i)(B ∩Ai) = clT (B ∩Ai)
by Lemma 7.19 (ii). It follows that

f [ clT B ] =
⋃
i∈I

f [ clT (B ∩Ai)]

=
⋃
i∈I

(f |Ai)
[

clT (i)(B ∩Ai)
]

=
⋃
i∈I

cl
(
(f |Ai) [B ∩Ai]

)
⊂ cl

(⋃
i∈I f [B ∩Ai]

)
= cl (f [B])

where the third equation is a consequence of Theorem 6.88 (ii) and the fourth

line follows by Lemma 6.78 (vii). The continuity of f now follows by the same

Theorem. �
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Remark 7.27

Let < be the standard ordering on R, T the standard topology on R, a, b ∈ R
with a < b, A = [a, b], <A the restriction of < to A, TB the interval topology

of (A,<A), and TA = T |A. We denote by subscript A intervals with respect to

the ordering <A . All other intervals refer to the ordering <. The system

S =
{

]−∞, x[ , ]x,∞[ : x ∈ R
}
∪ {Ø}

is a subbase for T . Further the system

R =
{

]−∞, x[A , ]x,∞[A : x ∈ A
}
∪ {A}

is a subbase for TB . We have

R =
{

[a, x[ : x ∈ A\{a}
}
∪
{

]x, b] : x ∈ A\{b}
}
∪
{
A,Ø

}
=
{
S ∩A : S ∈ S

}
It follows by Lemma 7.12 (iii) that TA = TB . �
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Example 7.28

Let ξ = (R, T ) where T is the standard topology, a, b ∈ R with a < b, A = ]a, b],

and α = (A, TA) = ξ |A the topological subspace. We define

S+ =
{

]x, b] : x ∈ A\{b}
}

R+ =
{

]x, b] : x ∈ D ∩ (A\{b})
}
∪ {A}

B =
{

]x, y[ : x, y ∈ R, x < y
}
∪ {Ø}

BA =
{

]x, y[ : x, y ∈ A, x < y
}
∪ {Ø}

A =
{

]x, y[ : x, y ∈ D, x < y
}
∪ {Ø}

AA =
{

]x, y[ : x, y ∈ D ∩A, x < y
}
∪ {Ø}

Each of the systems B and A is a base for T by Remark 5.102. Each of the

systems BA ∪ S+ and AA ∪R+ is a base for TA.

Further let c ∈ R with a < c < b. Then the following statements hold:

]c, b] /∈ Nξ{b} , ]c, b] ∈ Nα{b} ,

clξ ]a, c[ = [a, c] , clα ]a, c[ = ]a, c] ,

clξ ]c, b[ = [c, b] , clα ]c, b[ = [c, b] ,

intξ [c, b] = ]c, b[ , intα [c, b] = ]c, b] ,

boundξ ]a, c[ = {a, c} , boundα ]a, c[ = {c}

�
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Example 7.29

Let T be the standard topology on R. The set D is neither T -open nor T -closed

by Lemma 4.46. Further let TD be the relative topology on D, and a, b ∈ R with

a < b. The set [a, b] ∩ D is TD-closed. If a, b /∈ D, then this set is also TD-open.

�

7.3 Product topology

In this Section we consider another important special case of inverse image

topologies: product topologies.

Definition 7.30

Let ξi = (Xi, Ti) (i ∈ I) be topological spaces where I is an index set,

X = ×i∈I Xi , and pi : X −→ Xi the projections. The topology T =

τ({(pi, Ti) : i ∈ I}) is called product topology and denoted by
∏
i∈I Ti . The

topological space ξ = (X, T ) is called product topological space, or short

product space, and denoted by
∏
i∈I ξi . If I = σ(n)\m for some m,n ∈ N

with m < n, then we also write
∏n
k=m Tk for T , and

∏n
k=m ξk for ξ. If I = N\m

for some m ∈ N, then we also write
∏∞
k=m Tk for T , and

∏∞
k=m ξk for ξ. �

While the symbol× always denotes the Cartesian product, the symbol
∏

has

several meanings, e.g. it denotes the product topology and the product space

as well as product nets. More meanings of
∏

are introduced below. In each

occurrence we ensure that the correct interpretation is evident from the context.

We also remind the reader that we often use the notation xi for pi(x), where

i ∈ I and x ∈ X, as introduced in the general case of generated topologies in

Lemma and Definition 7.1.
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By definition the projections pi are continuous maps. Furthermore the following

result holds.

Lemma 7.31

With definitions as in Definition 7.30 the projections pi : X −→ Xi are open

maps.

Proof. Let i ∈ I, U ∈ T , and Ui = pi [U ]. To show that Ui is open let r ∈ Ui .

We may choose x ∈ U such that pi(x) = r. Further let K @ I and Vk ∈ Tk
(k ∈ K) such that x ∈

⋂
k∈K p−1

k [Vk] ⊂ U . If i /∈ K, then we have Ui = Xi . If

i ∈ K, then it follows that r ∈ Vi ⊂ Ui . �

Lemma 7.32

Let I be an index set. For every i ∈ I let (Xi, Ri) be a pre-ordered space such

that Ri has full field. Further let Ti (i ∈ I) be the respective interval topologies

and X =×i∈I Xi . Then, for every i ∈ I, Si = p−1
i [Ri] is a pre-ordering on X

that has full field. Let S = {Si : i ∈ I}, and T be the S-interval topology. Then

we have T =
∏
i∈I Ti .

Proof. For every i ∈ I, Si is a pre-ordering by Example 2.82 and clearly has full

field. We have{
]−∞, x[S(i) , ]x,∞[S(i) : x ∈ X, i ∈ I

}
∪ {Ø}

=
{
p−1
i

[
]−∞, xi[R(i)

]
, p−1

i

[
]xi,∞[R(i)

]
: x ∈ X, i ∈ I

}
∪ {Ø}

=
{
p−1
i

[
]−∞, r[R(i)

]
, p−1

i

[
]r,∞[R(i)

]
: r ∈ Xi , i ∈ I

}
∪ {Ø}

The first expression is a subbase for T , and the last is a subbase for the product

topology. �
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Remark 7.33

Let T , T+ , T n, and T n+ be the standard topologies on R, R+ , Rn, and Rn+ ,

respectively, where n ∈ N, n > 0. We have T n =
∏n
k=1 T and T n+ =

∏n
k=1 T+ .

�

Next we demonstrate that an iterated product of topological spaces is essentially

a product of those topological spaces.

Lemma and Definition 7.34

Let ξj = (Xj , Tj) (j ∈ Ji, i ∈ I) be topological spaces where I is an index set

and Ji (i ∈ I) are disjoint index sets. Further let K =
⋃
{Ji : i ∈ I}. Then∏

i∈I

(∏
j∈Ji ξj

)
and

∏
j∈K ξj are homeomorphic.

Proof. For every i ∈ I let (Yi, Ti) =
∏
j∈Ji (Xj , Tj). Further let (Y, TY ) =∏

i∈I (Yi, Ti) and (X, TX) =
∏
j∈K (Xj , Tj). We define the map

f : X −→ Y ,((
f(h)

)
(i)
)

(j) = h(j) for every i ∈ I and j ∈ Ji

Then f is a bijection by Remark 2.71. For every i ∈ I the topology Ti is gen-

erated by {(pij , Tj) : j ∈ Ji} where pij : Yi −→ Xj (j ∈ Ji) are the projections.

The topology TY is generated by {(pi, Ti) : i ∈ I} where pi : Y −→ Yi (i ∈ I)

are the projections. Furthermore TX is generated by {(qj , Tj) : j ∈ K} where

qj : X −→ Xj (j ∈ K) are the projections. Hence

SX =
{
q−1
j [U ] : j ∈ K, U ∈ Tj

}
is a subbase for TX . Since qj ◦f−1 = pij ◦pi for every i ∈ I, j ∈ Ji , the topology

TY is generated by
{(
qj ◦ f−1, Tj

)
: j ∈ K

}
by Lemma 7.7. This means that

f JSXK is a subbase for TY . Thus f is a homeomorphism. �
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The following result is a direct consequence of the more general Theorem in

Section 7.1, however, it is particularly important in the case of product spaces.

Corollary 7.35

With definitions as in Definition 7.30 let (xn) be a net in X, F a filter on X,

and x ∈ X. The following statements hold:

(i) xn → x ⇐⇒ ∀i ∈ I pi(xn)→ pi(x)

(ii) F → x ⇐⇒ ∀i ∈ I pi JF K→ pi(x)

Proof. This follows by Theorem 7.9. �

Corollary 7.36

Let I be an index set. For every i ∈ I let (Xi, Ti) be a topological space, Ai ⊂ Xi ,

and (xin) a net in Ai . Further let (X, T ) =
∏
i∈I (Xi, Ti) and pi : X −→ Xi

(i ∈ I) be the projections. Moreover, let (xr) =
∏
i∈I (xin) and x ∈ X. Then we

have

xr → x ⇐⇒ ∀i ∈ I xin → pi(x)

Proof. This is a consequence of Corollary 7.35 and Lemma 6.30. �
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Theorem 7.37

Let I be an index set. For every i ∈ I let (Xi, Ti) be a topological space and

Ai ⊂ Xi . Moreover let (X, T ) =
∏
i∈I (Xi, Ti) and pi : X −→ Xi (i ∈ I) be the

projections. Further we define A =×i∈I Ai . The following statements hold:

(i) A =×i∈I Ai

(ii) A is closed iff Ai is closed for every i ∈ I.

(iii) Ø 6= A ∈ T ⇐⇒(
∀i ∈ I Ø 6= Ai ∈ Ti

)
∧
(
∃K @ I ∀j ∈ I\K Aj = Xj

)
(iv) A◦ ⊂×i∈I A

◦
i

(v) If A◦ 6= Ø, then we have:

A◦ =×i∈I A
◦
i ⇐⇒ ∃K @ I ∀i ∈ I\K Ai = Xi

(vi) T |A =
∏
i∈I (Ti |Ai)

Proof. Notice that (i) follows by Theorem 6.71 (iii) and Corollaries 7.35 and 7.36.

(ii) is a consequence of (i).

To show (iii), assume that Ø 6= A ∈ T . For every i ∈ I, we clearly have Ai 6= Ø,

and Ai = pi [A] ∈ Ti since pi is open by Lemma 7.31. Let x ∈ A. We may

choose K @ I and, for each i ∈ K, Ui ∈ Ti such that x ∈ U ⊂ A where

U =
⋂
i∈K p

−1
i [Ui]. Then we obtain Xi = pi [U ] ⊂ Ai for every i ∈ I \K. The

reverse implication holds by definition of the product topology.

To see (iv), let x ∈ A◦. There is U ∈ T such that x ∈ U ⊂ A. For every i ∈ I,

we have pi(x) ∈ pi [U ] ⊂ Ai and pi [U ] ∈ Ti since pi is open. Hence pi(x) ∈ A◦i
for every i ∈ I.

In order to prove (v), first note that we clearly have A ⊃×i∈I A
◦
i . Assume that

A◦ 6= Ø. It follows that A◦i 6= Ø for every i ∈ I by (iv).

If there is K @ I such that Ai = Xi (i ∈ I \K), then×i∈I A
◦
i is open by (iii)
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and we obtain A◦ ⊃×i∈I A
◦
i . It follows that A◦ =×i∈I A

◦
i . The converse

follows by (iii).

To show (vi), let i ∈ I and U ∈ Ti . We have

p−1
i [U ] ∩ A = (pi |A)

−1
[U ∩Ai]

Thus there is a subbase for T |A that is a subbase for
∏
i∈I (Ti |Ai) as well. �

Corollary 7.38

Let T , T+ , T n, and T n+ be the standard topologies on R, R+ , Rn, and Rn+ ,

respectively, where n ∈ N, n > 0. We have T n+ = T n |Rn+ .

Proof. This is shown by Remark 7.33, Lemma 7.15, and Theorem 7.37 (vi) as

follows:

T n+ =

n∏
k=1

T+ =

n∏
k=1

(T |R+) = T n |Rn+

�

Lemma 7.39

With definitions as in Definition 7.30, let (Y, TY ) be a topological space and

g : Y −→ X be a map. Then g is continuous iff pi ◦ g is continuous for every

i ∈ I.

Proof. This follows by Theorem 7.8. �

Lemma 7.40

Let I be an index set and, for each i ∈ I, let (Xi, Ti) and (Yi, T ′i ) be topological

spaces and fi : Xi −→ Yi a map. Further let X =×i∈I Xi and Y =×i∈I Yi ,

and the map f : X −→ Y be defined by
(
f(x)

)
i

= fi(xi) (i ∈ I). Then f is

continuous iff fi is continuous for every i ∈ I.

Proof. This follows by Theorem 6.49 (vi) and Corollary 7.35 (i). �
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We recall that the space of all functions from a set X to a set Y , written Y X , is

identical to the Cartesian product×x∈X Y with equal factors Y . We often en-

counter subsets of functions F ⊂ Y X . In such situations the following definition

is convenient.

Definition 7.41

Let X and Y be two sets, F ⊂ Y X , and px : Y X −→ Y (x ∈ X) the projections,

i.e. px(f) = f(x) for every x ∈ X and every f ∈ Y X . Given z ∈ X, the restriction

qz = pz |F is called evaluation function at z. �

Remark 7.42

With definitions as in Definition 7.41, we have f(x) = qx(f) for every f ∈ F and

x ∈ X. Let j : F ↪→ Y X . Then qx = px ◦ j (x ∈ X). �

Since the set of functions F in Lemma and Definition 7.41 is a subset of a

Cartesian product, the concepts of relative topology and product topology may

be used to define a topology on F .

Definition 7.43

Let X be a set, (Y, TY ) a topological space, T the product topology on Y X , and

(F, TF ) a subspace of
(
Y X , T

)
. TF is called topology of pointwise conver-

gence. �

Remark 7.44

Let X be a set, (Y, TY ) a topological space, F ⊂ Y X , qx (x ∈ X) the evaluation

functions with domain F , and TF the topology of pointwise convergence on F .

We have TF = τ ({(qx, TY ) : x ∈ X}) by Lemma 7.7. Moreover, the functions

qx (x ∈ X) are TF -TY -continuous. �
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Example 7.45

RN is the set of all real-valued sequences. Let T be the topology of pointwise

convergence on RN that corresponds to the standard topology on R. The space(
RN, T

)
is second countable by Remark 5.102 and Lemmas 3.70 and 3.71. �

Theorem 7.46

With definitions as in Remark 7.44, let (fn) be a net in F , F a filter on F , and

f ∈ F . The following statements hold:

(i)
(
fn → f with respect to TF

)
⇐⇒(

∀x ∈ X fn(x)→ f(x) with respect to TY
)

(ii)
(
F → f with respect to TF

)
⇐⇒(

∀x ∈ X qxJF K→ f(x) with respect to TY
)

Proof. This is a consequence of Theorem 7.9 and Remark 7.44. �

7.4 Direct image topology

Lemma and Definition 7.47

Given a set X, topological spaces (Yi, Ti) (i ∈ I) where I is an index set, and

functions fi : Yi −→ X (i ∈ I), the system
⋂
i∈I
{
B ⊂ X : f−1

i [B] ∈ Ti
}

is a

topology on X. It is called direct image topology or the topology generated

by F = {(Ti, fi) : i ∈ I} and is denoted by τ(F ). It is the finest topology T
on X such that fi is Ti -T -continuous for every i ∈ I.

Proof. τ(F ) clearly has properties (i) to (iii) in Definition 5.9. Now let A be the

set of all topologies T on X such that fi is Ti -T -continuous for every i ∈ I. We

clearly have τ(F ) ∈ A . Moreover, for every T ∈ A we have T ⊂ τ(F ). Hence

τ(F ) is the finest member of A . �
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Notice that our convention is such that every member of F has the topology of

the domain space as its left coordinate, in contrast to Lemma and Definition 7.1

where the members of the generating system have the topology of the range space

as their right coordinate.

The following is an important special case.

Corollary 7.48

Let X be a set, I an index set, and, for each i ∈ I, Ti a topology on X. Further

let F = {(Ti, idX) : i ∈ I}. We have τ(F ) =
⋂
i∈I Ti . τ(F ) is the infimum of

{Ti : i ∈ I} in the ordered space (T (X),⊂), i.e. it is the finest topology on X

that is coarser than Ti for every i ∈ I.

Proof. Exercise. �

Direct image topologies may be characterized by a universal property, similarly

to the case of inverse image topologies (cf. Theorem 7.8).

Theorem 7.49

Let (X, T ) be a topological space, I an index set, (Yi, Ti) (i ∈ I) topological

spaces, fi : Yi −→ X (i ∈ I) functions, and F = {(Ti, fi) : i ∈ I}. The following

statements are equivalent:

(i) T = τ(F )

(ii) For every topological space (Z, TZ) and every function g : X −→ Z, g is

T -TZ -continuous iff g ◦ fi is Ti -TZ -continuous for every i ∈ I.

Proof. To see that (i) implies (ii), assume that τ(F ) = T . Then fi is Ti -

T -continuous for every i ∈ I. Further let (Z, TZ) be a topological space and

g : X −→ Z a map. If g is continuous, then g ◦fi is continuous for every i ∈ I by

Lemma 6.58. To show the converse let U ∈ TZ . If g ◦ fi is continuous for every
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i ∈ I, then we have f−1
i

[
g−1 [U ]

]
∈ Ti (i ∈ I), and therefore g−1 [U ] ∈ T . Thus

g is continuous.

To show that (ii) implies (i), it is enough to show that the topology T is uniquely

specified by property (ii). Assume that T1 and T2 are two topologies on X such

that (ii) is satisfied in both cases. Now let Z = X and g = idX . Since g is

Tm -Tm -continuous for m ∈ {1, 2}, it follows that fi is Ti -Tm -continuous for

m ∈ {1, 2} and i ∈ I. Thus g is T1 -T2 -continuous and T2 -T1 -continuous, and

hence T1 = T2. �

The following result is a characterization of the direct image topology in the case

of a single function.

Theorem 7.50

Let (X, TX) and (Y, TY ) be two topological spaces and f : X −→ Y a map. If f

is TX -TY -continuous, surjective, and either TX -TY -open or TX -TY -closed, then

we have TY = τ ({(TX , f)}).

Proof. Let T = τ ({(TX , f)}), and assume that f is TX -TY -continuous, surjec-

tive, and either open or closed.

Since T is the finest topology on Y such that f is TX -T -continuous, we have

TY ⊂ T .

Conversely, let U ∈ T . Then we have f−1 [U ] ∈ TX . First consider the case

that f is TX -TY -open. Then we have U = f
[
f−1 [U ]

]
∈ TY . Second, if f is

TX -TY -closed we have

U =
(
U c
)c

=
(
f
[
f−1 [U c]

] )c
=
(
f
[(
f−1 [U ]

)c ])c ∈ TY
�
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7.5 Quotient topology

In this Section we analyse an important special case of the concept introduced

in Section 7.4.

Definition 7.51

Let (X, T ) be a topological space, R an equivalence relation on X, and

f : X −→ X/R, f(x) = [x]. The topology TR = τ ({(T , f)}) is called quo-

tient topology. The space (X/R, TR) is called quotient topological space,

or short quotient space. �

Lemma 7.52

Let X be a set, (Y, T ) a topological space, f : Y −→ X a surjective function,

and R the equivalence relation on Y defined by

(y, z) ∈ R ⇐⇒ f(y) = f(z)

Further let TR be the quotient topology on Y/R and TX = τ ({(T , f)}). Then

(Y/R, TR) and (X, TX) are homeomorphic.

Proof. We define the map g : Y −→ Y/R, g(y) = [y]. Further let the map

h : Y/R −→ X be defined by h([y]) = f(y) for every y ∈ Y . h is clearly

well-defined. We show that h is a homeomorphism. h is clearly bijective. We

have h ◦ g = f . Therefore the continuity of f implies the continuity of h by

Theorem 7.49. Furthermore, we have g = h−1 ◦ f . Hence the continuity of g

implies the continuity of h−1 by the same Theorem. �
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Theorem 7.53

Let (X, d) be a pseudo-metric space and R = {(x, y) : d(x, y) = 0}. R is an

equivalence relation on X. The map

D : (X/R)× (X/R) −→ R+ , D ([x], [y]) = d(x, y)

is a metric on X/R. Moreover τ(D) is the quotient topology of τ(d).

Proof. R clearly is an equivalence relation on X. The function D is well-defined

because of the triangle inequality for d. That D is a pseudo-metric follows by

the fact that d is a pseudo-metric, and that D is a metric is then obvious. In

order to show that D generates the quotient topology of τ(d), it is enough by

Theorem 7.50 to show that the map f : X −→ X/R, f(x) = [x], is τ(d)-

τ(D)-continuous and τ(d)-τ(D)-open. Since f is an isometry, this follows by

Lemma 6.66. �
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Chapter 8

Functions and real numbers
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In this Chapter we use the various concepts introduced in Chapters 5 to 7 (topolo-

gies, pseudo-metrics, continuity, etc.) in the context of the number systems de-

fined in Chapter 4.

Definition 8.1

We adopt the convention that all notions related to topologies on R and Rn,

and their subsets refer to the respective standard topologies or their relative

topologies if not otherwise specified. �

In particular, according to this convention we refer to the standard topologies

on R+ and Rn+ since these are the relative topologies by Lemma 7.15 and Corol-

lary 7.38.

Lemma 8.2

The addition + : R2 −→ R, the absolute value b : R −→ R+ , the multiplica-

tion · : R2 −→ R, and, for every m ∈ N, the exponentiation hm : R+ −→ R+ ,

hm(α) = αm, are continuous functions.

Proof. We show the continuity of each function by means of Lemma 6.51. We

use the bases for the respective standard topologies on R and R+ as given in

Remarks 5.102 and 5.103.

The continuity of b is clear.

Let z ∈ R2, x and y be its left and right coordinates, i.e. z = (x, y), (zk) a

sequence in R2 such that zk → z, and (xk) and (yk) the left and right coordinate

sequences, i.e. zk = (xk, yk) for every k ∈ N. It follows that xk → x and yk → y

by Corollary 7.35.

To see that addition is continuous in z, let u, v ∈ R such that u < x+ y < v. We

define w = 1
2 min {x+ y − u, v − x− y}. There is n ∈ N such that

x− w < xk < x+ w, y − w < yk < y + w
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for every k ≥ n. Hence we have u < xk + yk < v for k ≥ n.

To show that multiplication is continuous in z, let u, v ∈ R such that u < xy < v.

We define w = 1
2 min {v − xy, xy − u}. For k ∈ N, we have

|xkyk − xy| = |xkyk − xky + xky − xy|

≤ |xk||yk − y|+ |xk − x||y|

by Remark 4.48 and Lemma 5.122. We may choose K ∈ R \ {0} such that

|x| < K. There is n ∈ N such that |xk| < K, |yk − y| < wK−1, and, if y 6= 0,

|xk − x| < w|y|−1 for every k ≥ n. It follows that, for k ≥ n, |xkyk − xy| < 2w,

and thus u < xkyk < v.

Finally, we show that hm is continuous for every m ∈ N by the Induction prin-

ciple. The case m = 0 is clear. Assume that hm is continuous for some m ∈ N.

The function f : R+ −→ R2
+ , f(α) = (hm(α), α), is continuous by Lemma 7.39

and Remark 7.33. Since the multiplication on R is continuous, the multiplica-

tion on R+ , g : R2
+ −→ R+ , g(α, β) = α · β, is continuous by Corollary 7.38 and

Lemma 7.18. Thus hm+1 = g ◦ f is continuous by Lemma 6.59. �

Proposition 8.3

Let x, y ∈ R and (xn) be a sequence in R such that xn → x. The following

statements hold:

(i) (∀n ∈ N xn ≤ y) =⇒ x ≤ y

(ii) (∀n ∈ N y ≤ xn) =⇒ y ≤ x

Proof. To see (i), we define A = ]−∞, y]. A is closed with respect to the standard

topology on R. Under the stated condition we have xn ∈ A for every n ∈ N, and

thus x ∈ A by Lemma 6.73 (i).

The proof of (ii) is similar. �
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Proposition 8.4

Let a, b, c, w ∈ R such that min {a, c} ≤ w ≤ max {a, c}. Then we have

min {a, b} ≤ w ≤ max {a, b} or min {b, c} ≤ w ≤ max {b, c}.

Proof. Exercise. �

Theorem 8.5 (Intermediate value)

Let x, y ∈ R with x < y, A = [x, y], f : A −→ R a continuous function, B = ran f ,

and u = min {f(x), f(y)}, v = max {f(x), f(y)}. The following statements hold:

(i) u < v =⇒ [u, v] ⊂ B

(ii) If f is strictly monotonic, then [u, v] = B.

(iii) We define the map g : A −→ B, g(z) = f(z). If g is strictly monotonic,

then it is bijective and g−1 is continuous. If g is strictly increasing (strictly

decreasing), then g−1 is strictly increasing (strictly decreasing).

Proof. To see (i), assume that u < v. Let w ∈ [u, v]. We define two sequences

(xn) and (yn) in A by (x0, y0) = (x, y), and recursively for every n ∈ N,

(xn+1, yn+1) =

 (xn, z) if s ≤ w ≤ t

(z, yn) else

where

z =
1

2
(xn + yn) , s = min {f(xn), f(z)} , t = max {f(xn), f(z)}

It follows by the Induction principle that yn − xn = (y0 − x0)/2n for every n ∈ N.

Thus, for every n ∈ N, we have xn < yn , whence xn < (xn + yn)/2 < yn ,

and thus xn ≤ xn+1 and yn+1 ≤ yn . Hence (xn) is increasing and (yn) is

decreasing by the Induction principle. Let T be the standard topology on R. Now

regarding (xn) and (yn) as sequences in the whole of R, they are increasing and
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decreasing, respectively, and bounded. Thus they are convergent with respect

to T by Lemma 6.10 and Remark 6.11, say xn → x∞ and yn → y∞ where

x∞ , y∞ ∈ X. Therefore x∞ = y∞ by Lemmas 8.2 and 6.12. Since A is T -

closed, we have x∞ ∈ A. Again regarding (xn) and (yn) as sequences in A, it

follows that xn → x∞ and yn → x∞ with respect to T |A by Lemma 7.16.

The continuity of f implies f(xn) → f(x∞) and f(yn) → f(x∞). Moreover we

have for every n ∈ N

min {f(xn), f(yn)} ≤ w ≤ max {f(xn), f(yn)}

by the Induction principle and Proposition 8.4. It follows that w = f(x∞) by

Proposition 8.3.

To see (ii), note that, if f is strictly monotonic, then clearly B ⊂ [u, v].

To see (iii), notice that the map g is surjective by definition. Now assume that g

is strictly monotonic. Then g is clearly injective. To see that g−1 is continuous,

note that the system

SA =
{

[x, z[ : z ∈ ]x, y]
}
∪
{

]z, y] : z ∈ [x, y[
}

is a subbase for T |A, and

SB =
{

[u, z[ : z ∈ ]u, v]
}
∪
{

]z, v] : z ∈ [u, v[
}

is a subbase for T |B, cf. Remark 7.27. We have g JSAK ⊂ SB , and thus g−1 is

continuous by Theorem 6.49 (ii).
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[If g is strictly increasing, we have for every z ∈ ]x, y]:

g
[

[x, z[
]

= g
[

[x, z] \ {z}
]

= g
[

[x, z]
]
\ {g(z)}

= [g(x), g(z)] \ {g(z)} = [u, g(z)[

where the third equation is a consequence of (ii) and Lemma 7.18.

Moreover if g is strictly increasing, we have for every z ∈ [x, y[ :

g
[

]z, y]
]

= ]g(z), v]

If g is strictly decreasing, we have

∀z ∈ ]x, y] g
[

[x, z[
]

= ]g(z), v] ,

∀z ∈ [x, y[ g
[

]z, y]
]

= [u, g(z)[

]

The last two claims are now obvious. �

Corollary 8.6

Let f : R+ −→ R+ be a map with f(0) = 0. If f is continuous, strictly increasing,

and unbounded, then f is bijective and f−1 is continuous and strictly increasing.

Proof. Assume the stated conditions. f is clearly injective. To see that it is

surjective, let y ∈ R+ . Since f is unbounded, there is x ∈ R+ such that f(x) > y.

It follows that y ∈ [0, f(x)] = f
[

[0, x]
]

by Lemma 7.18, and Theorem 8.5 (ii).

Moreover f−1 is clearly strictly increasing.

Finally we show that f−1 is continuous. For every m ∈ N we define Am =

[m,m+ 1] and the function

fm : Am −→ R, fm(x) = f(x)

and Bm = ran fm . Clearly these maps are strictly increasing and continuous
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by Lemma 7.18. We have Bm = [fm(m), fm+1(m+ 1)] (m ∈ N) by Theo-

rem 8.5 (ii). Further for every m ∈ N we define the map

gm : Am −→ Bm , gm(x) = fm(x)

The functions gm (m ∈ N) are strictly increasing. By Theorem 8.5 (iii), for every

m ∈ N, gm is bijective and g−1
m is continuous. For every m ∈ N we define

tm : Bm −→ R+ , tm(y) = g−1
m (y)

The functions tm (m ∈ N) are continuous by Lemma 7.18. We have tm = f−1|Bm
(m ∈ N).

[This is seen as follows:

(y, x) ∈ tm ⇐⇒ (y, x) ∈ g−1
m ⇐⇒ (x, y) ∈ gm ⇐⇒ (x, y) ∈ fm

⇐⇒ (x, y) ∈ f ∧ x ∈ Am

⇐⇒ (y, x) ∈ f−1 ∧ y ∈ Bm

⇐⇒ (y, x) ∈ f−1|Bm

]

Thus f−1 is continuous by Theorem 7.26. �

Lemma and Definition 8.7

For every m ∈ N with m > 0 let hm : R+ −→ R+ , hm(α) = αm. The map

hm is bijective. h−1
m is called m-th root function. h−1

2 is called square root

function. h−1
m is continuous and strictly increasing for m ∈ N, m > 0. We also

write α
1
m , α1/m, or m

√
α for h−1

m (α). Moreover, we also write
√
α for h−1

2 (α).

The value α1/m is called m-th root of α. The value α1/2 is called square root

of α.

For α, β ∈ R+ and m ∈ N with m > 0, we have (αβ)
1/m

= α1/m β1/m.
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Proof. Let m ∈ N with m > 0. Then hm is continuous by Lemma 8.2, and strictly

increasing and unbounded by Lemma 4.40. Furthermore, we have hm(0) = 0. It

follows by Corollary 8.6 that hm is bijective, and that h−1
m is strictly increasing

and continuous.

To see the last claim notice that for every α, β ∈ R+ and every m ∈ N with

m > 0 we have (
α1/m β1/m

)m
= αβ

by Lemma and Definition 4.30. �

Definition 8.8

Let n ∈ N and x ∈ Rn. Further let the function S : σ(n)\{0} −→ R be recursively

defined by S(1) = x1 and S(k + 1) = S(k) + xk+1 for 1 ≤ k ≤ n− 1. For every

m ∈ N with 1 ≤ m ≤ n, S(m) is called a finite series and denoted by

m∑
k=1

xk

If n ≥ 2, then we write

m∑
k=l

xk for S(m) − S(l − 1) where l,m ∈ N with

2 ≤ l ≤ m ≤ n. �

Note that Definition 8.8 is based on the Local recursion theorem 3.52. The

Recursion theorem for natural numbers, Theorem 3.13, does not suffice.
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Lemma 8.9

Let n ∈ N, x, y ∈ Rn, and z ∈ R. Then the following statements hold:

(i)

n∑
k=1

(xk + yk) =

(
n∑
k=1

xk

)
+

(
n∑
k=1

yk

)

(ii)

n∑
k=1

(z · xk) = z ·

(
n∑
k=1

xk

)

(iii) xk > 0 (1 ≤ k ≤ n) =⇒
n∑
k=1

xk > 0

(iv) xk ≥ 0 (1 ≤ k ≤ n) =⇒
n∑
k=1

xk ≥ 0

(v)

(
xk ≥ 0 (1 ≤ k ≤ n) ∧

n∑
k=1

xk = 0

)
=⇒ xk = 0 (1 ≤ k ≤ n)

Proof. Exercise. �

Lemma 8.10

Let x, y ∈ Rn. The following statements hold:

(i)

(
n∑
k=1

xkyk

)2

≤

(
n∑
k=1

x2
k

)(
n∑
k=1

y2
k

)
(Cauchy-Schwarz inequality)

(ii)

(
n∑
k=1

(xk + yk)2

)1/2

≤

(
n∑
k=1

x2
k

)1/2

+

(
n∑
k=1

y2
k

)1/2

© 2013 Felix Nagel — Set theory and topology, Part II: Topology – Fundamental
notions



154 Chapter 8. Functions and real numbers

Proof. We first prove (i). We have

0 ≤
n∑
k=1

n∑
l=1

(xkyl − xlyk)
2

=

n∑
k=1

n∑
l=1

(
x2
ky

2
l + x2

l y
2
k − 2xkxlykyl

)
= 2

(
n∑
k=1

x2
k

)(
n∑
l=1

y2
l

)
− 2

(
n∑
k=1

xkyk

)(
n∑
l=1

xlyl

)

In order to show (ii), notice that

n∑
k=1

(xk + yk)2 =

n∑
k=1

x2
k +

n∑
k=1

y2
k + 2

n∑
k=1

xkyk

≤
n∑
k=1

x2
k +

n∑
k=1

y2
k + 2

(
n∑
k=1

x2
k

)1/2( n∑
k=1

y2
k

)1/2

=

( n∑
k=1

x2
k

)1/2

+

(
n∑
k=1

y2
k

)1/2
2

by the Cauchy-Schwarz inequality and the fact that the square root function is

increasing. �

Lemma and Definition 8.11

For n ∈ N with n > 0 the map

d : Rn× Rn −→ R+ , d(x, y) =

(
n∑
k=1

|xk − yk|2
)1/2

is a metric. It is called Euclidean metric.

Proof. Notice that d satisfies the triangle inequality by Lemmas 5.122 and 8.10 (ii),

and thus it is a pseudo-metric. Further d is a metric by Lemma 8.9 (v). �
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Lemma 8.12

Let n ∈ N with n > 0, d the maximum metric on Rn, and T the standard

topology on Rn. Then τ(d) = T .

Proof. We define the function

B : Rn× ]0,∞[ −→ P(X),

B(x, r) =
{
y ∈ Rn : |xk − yk| < r (1 ≤ k ≤ n)

}
The system

B =
{
B(x, r) : x ∈ Rn, r ∈ ]0,∞[

}
∪ {Ø}

is a base for τ(d) by definition. Moreover the system

A =
{

]x, y[ : x, y ∈ Rn, (x, y) ∈ S
}
∪ {Ø}

is a base for T where the interval refers to the ordering S on Rn as defined in

Remark 5.107. We clearly have B ⊂ A and A ⊂ Θ(B). �

Lemma 8.13

Let n ∈ N with n > 0. Let e be the Euclidean metric on Rn and d the maximum

metric on Rn. We have τ(d) = τ(e).

Proof. Notice that we have e(x, y) ≤
√
nd(x, y) and d(x, y) ≤ e(x, y) for every

x, y ∈ Rn. The claim follows by Lemma 5.125. �

Corollary 8.14

For every n ∈ N with n > 0, the topology generated by the Euclidean metric

on Rn is the standard topology.

Proof. This is a consequence of Lemmas 8.12 and 8.13. �
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Corollary 8.15

Let (xn) be a sequence in R. If (xn) is convergent, then it has a unique limit

point.

Proof. Let x, y ∈ R be two limit points of (xn). For every n ∈ N there is m ∈ N
such that |xm − x| < 1/n and |xm − y| < 1/n by Remark 6.22. It follows that

|x−y| ≤ |x−xm|+ |xm−y| < 2/n. Therefore we have |x−y| = 0 by Lemma 6.12

and Proposition 8.3 (ii), and thus x = y. �

Proposition 8.16

For every x ∈ R with x > 1 and every m ∈ N we have xm ≥ m(x− 1) + 1.

Proof. The claim is clear for m = 0 and every x ∈ R with x > 1. Now assume

that it holds for some m ∈ N and every x ∈ R with x > 1. Then we have

xm+1 = xm · x ≥
(
m(x− 1) + 1

)
· x > m(x− 1) + x

= m(x− 1) + (x− 1) + 1 = (m+ 1)(x− 1) + 1

�

Proposition 8.17

Let x ∈ R+ . The sequence (xm : m ∈ N) is unbounded if x > 1, and converges

to 0 if 0 < x < 1.

Proof. If x > 1, then xm is unbounded by Proposition 8.16 and Lemma 4.40. If

0 < x < 1, then xm → 0 by Lemma 6.12. �

Lemma 8.18 (Finite geometric series)

Let x ∈ R. We have
m∑
k=0

xk =
1− xm+1

1− x
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Proof. The equality is clearly true for m = 0. Assuming that it is true for some

m ∈ N, we have

m+1∑
k=0

xk =
1− xm+1

1− x
+ xm+1 =

1− xm+2

1− x

�

Definition 8.19

Let (xn) be a sequence in R. We define the function S : N −→ R recursively by

S(0) = x0 , and S(k + 1) = S(k) + xk+1 (k ∈ N). For every m ∈ N, S(m) is

called a finite series and denoted by

m∑
k=0

xk

Moreover, we write

n∑
k=m

xk for S(n)− S(m− 1) where m,n ∈ N and 0 < m ≤ n.

�

Similarly to Definition 8.8, Definition 8.19 is based on the Local recursion theo-

rem 3.52.

Lemma and Definition 8.20

Let (xn) be a sequence in R. If the sequence
(∑m

k=0 xk
)
m

is convergent, its limit

point is unique and denoted by
∞∑
k=0

xk

It is called infinite series.

Proof. The uniqueness follows by Corollary 8.15. �
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Lemma 8.21 (Geometric series)

The sequence
(∑m

k=0 x
k
)
m

has a limit point for x ∈ [0, 1[ . In this case we have

∞∑
k=0

xk =
1

1− x

Proof. We have

limm

m∑
k=0

xk = limm
1− xm+1

1− x
=

1

1− x

by Lemmas 8.18 and 8.2, and Proposition 8.17. �
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Index

Accumulation point, 95

Adherence point

filter, 77

net, 71

sequence, 65

Associated, 79

Base

coarser, 14

comparable, 14

finer, 14

for a filter, 25

for a topology, 13

for the closed sets, 17

strictly coarser, 14

strictly finer, 14

topological, 14

Boundary, 99

Boundary point, 99

Bounded, 56

Cauchy-Schwarz inequality, 153

Closed

function, 93

set, 9

Closed in, 121

Closed sphere, 58

Closure, 95

Closure operator, 104

Cluster point

filter, 28

filter base, 28

Continuous, 89

filter, 83

topological space, 84, 86

Convergence

pointwise, 138

Convergent

filter, 77

net, 71

sequence, 65

Dense, 110

Derived set, 95

Direct image topology, 139
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Distance, 91

Embedding, 89

Euclidean metric, 154

Evaluation function, 138

Eventually, 64, 71

Filter, 23

adherence point, 77

coarser, 24

comparable, 24

discrete, 28

finer, 24

fixed, 28

free, 28

generated, 80

image, 82

indiscrete, 28

inverse image, 82

limit point, 77

strictly coarser, 24

strictly finer, 24

Filter base, 25, 26

coarser, 26

comparable, 26

finer, 26

fixed, 28

generated, 80

intersection, 29

strictly coarser, 26

strictly finer, 26

Finite geometric series, 156

Finite intersection property, 19

Finite series, 152

First countable, 43

Frequently, 64, 71

Function

closed, 93

open, 93

Geometric series, 156, 158

Homeomorphic, 88

Homeomorphism, 86

Image filter, 82

Inclusion, 121

Inequality

Cauchy-Schwarz, 153

Infinite series, 157

Interior, 95

Interior operator, 106

Interior point, 95

Intermediate value theorem, 148

Intersection

finite, of filter bases, 29

of two filter bases, 29

Interval topology, 45

Inverse image filter, 82
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Inverse image topology, 116

Isometry, 57

Iterated limits, 75

Limit point

filter, 77

net, 71

sequence, 65

m-th root function, 151

Metric, 56

Euclidean, 154

Metric space, 56

Neighborhood, 34

closed, 34

open, 34

Neighborhood base, 40

Neighborhood system, 33

closed, 33

open, 33

Net, 70

adherence point, 71

associated, 79

generated, 81

limit point, 71

product, 76

Open

function, 93

set, 9

Open in, 121

Open sphere, 58

Pointwise convergence, 138

Product net, 76

Product space, 132

Product topology, 132

Pseudo-metric, 56

bounded, 56

relative, 127

subspace, 127

Pseudo-metric space, 56

Quotient space, 142

Quotient topology, 142

Root function, 151

Second countable, 16, 43

Separable, 111

Sequence, 64

adherence point, 65

convergent, 65

limit point, 65

Sequentially equivalent, 69

Sequentially stronger, 69

Series

finite, 152

finite geometric, 156
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geometric, 158

infinite, 157

Set

accumulation point, 95

boundary, 99

boundary point, 99

closed in, 121

closure, 95

dense, 110

derived set, 95

interior, 95

open in, 121

Standard topology, 48, 51

Subbase

coarser, 20

comparable, 20

finer, 20

for a topology, 18

for the closed sets, 22

strictly coarser, 20

strictly finer, 20

topological, 19

Subnet, 73

Subsequence, 67

Subspace, 121, 127

Topological space, 9

first countable, 43

metrizable, 60

pseudo-metrizable, 60

second countable, 43

separable, 111

Topological subspace, 121

Topology, 9

coarser, 11

cocountable, 10

cofinite, 10

comparable, 11

direct image, 139

discrete, 10

finer, 11

first countable, 43

generated, 116, 139

indiscrete, 10

interval, 45

inverse image, 116

metric, 58

of pointwise convergence, 138

product, 132

pseudo-metric, 58

quotient, 142

relative, 121

second countable, 43

sequentially equivalent, 69

sequentially stronger, 69

standard, 48, 51

strictly coarser, 11
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strictly finer, 11

Ultrafilter, 25

existence, 32

Ultrafilter base, 30

existence, 31
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